
Axxia® AXX2500 Family
of Communication Processors

Virtual Pipeline™ Technology and
Accelerator Engines Reference Manual

Advance, Version 0.1
September 2012

DB13-000407-00

LSI, the LSI & Design logo, Axxia, and Virtual Pipeline are trademarks or registered trademarks of LSI Corporation or its subsidiaries. PowerPC is a registered trademark of International Business Machines
Corp. All other brand and product names may be trademarks of their respective companies.

This advance document describes a product in design or under development and contains information that may change substantially for any final commercial release of the product. LSI Corporation makes
no express or implied representation or warranty as to the accuracy, quality, or completeness of information contained in this document, and neither the release of this document nor any information included
in it obligates LSI Corporation to continue development or to make a commercial release of the product. LSI Corporation reserves the right to make changes to the product(s) or information disclosed herein
at any time without notice. LSI Corporation does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in
writing by LSI Corporation; nor does the purchase, lease, or use of a product or service from LSI Corporation convey a license under any patent rights, copyrights, trademark rights, or any other of the
intellectual property rights of LSI Corporation or of third parties. LSI products are not intended for use in life-support appliances, devices, or systems. Use of any LSI product in such applications without
written consent of the appropriate LSI officer is prohibited.

This document contains proprietary information of LSI Corporation. The information contained herein is not to be used by or disclosed to third parties without the express written permission of LSI Corporation.

Corporate Headquarters Email Website
Milpitas, CA globalsupport@lsi.com www.lsi.com
800-372-2447

Document Number: DB13-000407-00
Copyright © 2012 LSI Corporation
All Rights Reserved

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Revision History

Version and Date Description of Changes

Version 0.1, September 2012 Initial Release

Table of Contents

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Table of Contents

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 3 -

Chapter 1: Introduction to the Axxia Virtual Pipeline Technology . 9

Overview. .9
Accelerator Engines .10
Engine Sequences and Virtual Pipeline Instances .12

Branching Virtual Pipeline Instances and Flows . 12
APIs for Managing Virtual Pipeline Instances . 13

Task Communication .14
Messaging in Pipelines . 14
Passing Parameters Using Tasks . 15
Task Management . 15
Maintaining Task Order . 18
Load Balancing using Tasks . 19

Flow Parameters. .19
Backpressure .20

Backpressure Signals. 20
Namespaces. .20

Engine Tables. 21
Namespace Configuration . 21
Namespaces with More than One Engine Table . 23
Engine Table Entry Size and Memory Usage. 23
Managing Namespaces and Engine Tables from FPL Software or Using the RTE . 24
Sharing Data Between Engine Tables . 25
Engine Table Memory Addressing . 27
Engine Table Code Generation . 28

Troubleshooting. .29
Engine Monitoring . 29
Task Monitoring . 31
Conditional Logging . 31

Chapter 2: Modular Packet Processor (MPP) Engine . 33

Overview .33
MPP Classification Capabilities . 33

Features. .34
Pattern Processing Subengines. 34
Hash Subengine . 34
State Subengine . 34
Prequeue Modifier . 35
Semaphore Subengine. 35
MPP Packet Integrity Check Subengine . 36

MPP and Engine Sequence Interaction .36
MPP Block Diagram .36

MPP Pattern Processing Engines. 36
MPP Hash Engine . 37
MPP State Engine . 38
MPP Prequeue Modifier (PQM) . 38
MPP Semaphore Subengine. 38
MPP Packet Integrity Check Subengine . 38

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 4 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Table of Contents

Input and Output Parameters .39
MPP End Engine Input Task Parameters. 39
MPP Start Engine Output Task Parameters . 40

Packet Processing .41
Classification . 41
Dynamic Resource Management . 42
Names, Timers, and Hash Table Structure . 42
Stateful Processing . 43

Packet Modification .47
MPP Interaction with Engine Sequences . 47
FPL Flow and Tree Instruction Fetch . 48
Task Debugging . 49

Exception Handling. .49
State Engine . 49
MPP Packet Integrity Check Engine . 50
Hash Engine . 50
MPP System Monitoring Capabilities . 50
MPP Task Debugging . 51

Chapter 3: Memory Management Block (MMB) Engine . 52

Overview. .52
Features. .52

Chapter 4: Packet Assembly Block (PAB) Engine. 53

Overview. .53
Features. .53
PAB Functions .54

Identifying the Segment Data for Reassembly . 54
Defining the Segment Placement in the Reassembly Context. 54
Defining the Reassembled Packet Data to be Transmitted . 55
Transmitting the Reassembled Packet . 55
Discarding the Reassembly Context . 55
Checking Reassembly Context Status . 56

Using the PAB .56
Creating a Reassembly Context. 56
Adding Segments to Reassembly Contexts . 57
Transmitting All or Part of a Reassembled Packet. 57
Clearing a Reassembly Context . 57
Monitoring Reassembly Context Status . 58
Bypassing the PAB . 58
Using Bit-level Operations. 58
Using Timers with the PAB . 58
Using Sequence Numbers. 59

PAB Configuration Overview .59
PAB Task Receive Queue Configuration. .59
PAB Task Input Parameters. .60
PAB Task Output Parameters .61

PAB Task Output Parameters without the GetStatus command . 61
PAB Task Output Parameters with the GetStatus command . 63

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 5 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Table of Contents

PAB Commands .64
Independent PAB Command Parameters . 65
Using the Enqueue Commands. 68
Using the Transmit Commands. 72
TransmitCopy Command . 74
Transmit with Discard Command . 74
Discard Command . 74
Sticky Discard Command. 75
Cleanup Command . 75
Passthrough Command . 76
GetStatus_reasmState Command . 76
GetStatus_reasmPrioMem Command . 76
GetStatus_PrioMem Command . 76

PAB Exception Handling .76
Hardware Exception Handling. 77
Error Containment . 77

PAB Performance Monitoring Facilities .77

Chapter 5: Modular Traffic Manager (MTM) Engine . 78

Overview. .78
Features. .78

Buffer Management. 78
Traffic Scheduling and Traffic Shaping . 79
Flow Control. 79
Multicast Support. 79

MTM Processing .79
MTM Functional Description .80

Scheduling Packets . 80
Root Scheduler . 81
Adjusting Packet Size . 81
Arbitration and Scheduling Modes . 81
Rate Shaping Traffic. 84
Scheduler Operation . 85
SDWRR Scheduling . 85
DWRR Scheduling . 86
Strict Priority Scheduling . 86
Controlling Arbitration with Scripts. 86
Applying and Receiving Backpressure . 87

Defining Buffer Management Policies .88
Building the Scheduling Hierarchy .88
MTM Task Receive Queues and Buffer Management .88

Task Receive Queues. 88
MTM and Expander Engines . 88
Task Arrival and Enqueuing Arbitration . 89
Queue, Scheduler, and Global Parameters . 90
Buffer Management. 91
Draining Traffic from Queues and Schedulers . 91

MTM Input and Output Parameters .92
MTM Input Parameters . 92
MTM Output Parameters . 93
Setting the Final Output Target . 93
Unicast Processing . 94

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 6 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Table of Contents

Expander Input and Output Parameters .94
Expander Input Parameters . 94
Expander Output Parameters . 94
Expanded Unicast Processing . 94
Multicast Processing . 95

MTM Exception Handling .95
MTM Performance Monitoring Facilities .96

Chapter 6: Timer Manager (TMGR) Engine . 97

Overview. .97
Features. .97
Time Representations. .97
Formats .98

Axxia Time. 98
Axxia Delta Time . 98
Axxia Compressed Absolute Time . 99

Accuracy and Precision for Axxia Time. .99
Timers. .99

Non-cancellable Timers . 99
Cancellable Timers. 100

Using the TMGR Engine . 100
Characteristics . 100
Task Input Queue Configuration. 100
Starting TMGR Processing . 100
Task Input Parameters . 100
Task Output Parameters. 101

Exception Handling. 101
External Timing Reference Interface . 102

Performance Monitoring Facilities. 102
Timer Support . 102

Timer Support for Resource Management . 102
Timer Support for Scheduling . 103
Timer Support for General CPU Processing. 103

Support for External Clock Generation and Synchronization. 103
Generating an Output Reference Clock from Axxia Time . 103
Using an Input Reference Clock to Synchronize Axxia Time . 103
Mapping an Input Strobe to Synchronize Axxia Time with an External Device . 104
Using an Output Strobe to Synchronize Axxia Time with an External Device . 104
Support of Timing over Packet (ToP) Protocols . 104
Using EIOA Engines to Capture Network Time from Packets . 104

Chapter 7: Stream Editor (SED) Engine . 106

Overview. 106
Features. 106
SED Architecture . 107

SED Task Receive Queue Configuration . 107
SED Functional Description . 108

SED Capabilities . 108
SED Packet Editing Parameters . 108
SED Parameter Processing . 108

SED Input and Output Parameters. 109
SED Input Parameters . 109
SED Output Parameters . 110

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 7 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Table of Contents

SED Parameter Structure. 110
Parameter Data Structure . 110
Parm1 and Parm2 Namespace Table Parameters . 110
Indirect Mode Characteristics . 111
Merging Script Parameters . 113
Using Parm1 and Parm2 Parameter Combinations . 113
Using SED Parameters . 113

Exception Handling. 114

Chapter 8: Security Protocol Processor (SPP) Engine . 115

Overview. 115
Supported Protocols and Features . 115
Configuring Secure Connections . 116
SPP Architecture. 117
Virtual Pipeline Model . 118
SPP Virtual Pipeline Operation . 119

Chapter 9: Deep Packet Inspection (DPI) Engine. 120

Overview. 120
DPI Features. 120
Internal Architecture. 120

Compiling Rulesets to Configure the DPI . 122
DPI Task Input Queue Configuration . 122

Context Across Packets Within a Flow . 123
Initiating DPI Processing . 123
DPI Task Input Format . 123

Load Balancing . 124
Result Format. 126
Start Conditions . 126
Maximum Output. 126

DPI Task Output Format . 127
FirstResult and AllResult Formats . 128
Vector Result Format. 129

DPI Data Structures, Commands, and Exception Handling. 129

Chapter 10: Packet Integrity Check (PIC) Engine. 130

Overview. 130
Features. 130

CRC and Checksum Operations. 130
Supported IP Layer 4 Protocols . 131

 PIC Engine Processing . 131
PIC Input and Output Parameters . 133

PIC Input Parameters. 133
Setting Input Parameters. 134
PIC Output Parameters. 135
PIC Status Parameter. 136

 PIC Exception Handling . 136
 PIC Statistics Monitoring . 137

Chapter 11: Network Compute Adapter (NCA) . 138

Overview. 138

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 8 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Table of Contents

Chapter 12: Ethernet Input Output Adapter (EIOA) Engines . 139

Overview. 139
EIOA Engines with Preclassifier and Ethernet Switch (PCX) Features . 139

Hardware-based Address Learning . 140
VLAN Support . 140
Access Control List Support . 140
Ingress Policing . 141
Scheduling and Shaping . 141
Additional Ethernet Switching Functions . 141

Axxia EIOA Architecture. 142
EIOA Packet Classification . 142
Virtual Pipeline Destinations . 143
Egress Processing . 143

Ingress Packet Data Flow Overview. 144
EIOA Core Logic Processing . 144
Ingress Packet Processor (IPP) Functions. 144
Bridging Layer Classification and Switching. 145

Building the Bridging Lookup Keys . 145
MAC Address Learning . 146
MAC Address Aging. 146

ACL Classification. 146
Ingress Policing. 148
Destination Result Map and Mask Operations. 148
EIOA Multicast Replication . 150
VLAN Statistics . 150
EIOA Egress Processing and Scheduling . 151

Queue Scheduling . 151
Port Shaping . 151
Packet Field Modification . 151

Backpressure Support . 152
Handling PAUSE Frames . 152
Engine Backpressure . 152

Use Case Examples . 152
Preclassifier MPP Assist. 152
Daisy Chaining. 153
Virtual Pipeline Extension (VPE) . 153
Simple QoS without using the MTM . 154

 Axxia Communication Processor Glossary. 155

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 9 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 1: Introduction to the Axxia Virtual Pipeline Technology
Overview

Chapter 1: Introduction to the Axxia Virtual Pipeline Technology

This chapter introduces the LSI® Axxia® Virtual Pipeline™ technology. Additional information about specific engines is
available in their respective chapters.

Overview

The Axxia architecture lets you use both dedicated accelerator engines and general purpose processors in any
sequence to process packets. The processing does not require the CPU for scheduling or packet processing. This
approach enables system designers to create multiple, custom packet processing paths to match their application
packet and traffic flow processing requirements. This removes the need for special CPU programming to control job
queuing and scheduling for each packet processing path.

System designers can use the Axxia architecture to design packet processing paths with a sequence of accelerator
engines that can receive a packet processing request, perform processing, and then send the packet to another
engine for additional processing. The following figure shows an example Virtual Pipeline instance, which is a
sequence of accelerator engines.

Figure 1 Example Accelerator Engine Sequence (Simple Virtual Pipeline Instance)

A set of engines that define a processing path through the device is called an engine sequence. One or more engine
sequences can make up a Simple Virtual Pipeline instance. You can have multiple independent engine sequences
(similar to the previous figure) or dependent engine sequences in a Branching Virtual Pipeline instance that accomplish
the packet processing.

To create a system, the designer identifies the processing steps required for each traffic flow, and builds sequences of
engines to provide the appropriate processing in the required order. The Virtual Pipelines define one or more custom
processing engine sequences through the Axxia device.

Engines within an engine sequence, communicate by passing a message or task from one engine to the next
sequential engine. A task is a data structure that passes information from engine to engine to process a packet.
Accelerator engines can create, consume, or modify tasks.

Tasks passed through an engines sequence, contain the following general information.

 Contain a packet, or more often, have pointers to packet data in memory.
 Contain parameters that instruct engines how to process the packet.

Accelerator engines can perform prioritize tasks using these operations.

 Assign a priority (task created by start engines)
 Place tasks into select queues, based on priority
 Adjust task priority based on queue congestion (backpressure)

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 10 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 1: Introduction to the Axxia Virtual Pipeline Technology
Accelerator Engines

When a packet arrives for processing, the engine that receives the packet creates a task for that packet. Processing
engines use the task to exchange packet processing information. The task contains processing parameters passed
from engine to engine in the Virtual Pipeline instance. The task parameters affect packet processing for each engine.
When an engine completes its processing for a task, it sends the task to the next engine in the Virtual Pipeline
instance.

You can use Virtual Pipeline instances to provide the entire engine-to-engine processing path for the packet, and also
for coprocessing with the CPUs. When used for coprocessing, Virtual Pipeline instances define simple engine paths to
and from the CPUs, allowing the CPUs to offload compute-intensive packet processing functions to the accelerator
engines. For example, the main packet processing can be done by the CPUs, using the accelerator engines to perform
encryption, decryption, reassembly, or scheduling as steps in the CPU processing.

Accelerator Engines

The Axxia architecture lets you configure dedicated accelerator engines and general purpose processors in any
sequence to process packets. The Axxia device includes the following accelerator engines.

 Ethernet Input and Output Adapters (EIOA), Preclassifier and Ethernet Switch (PCX)
Each EIOA engine can receive packets from and transmits packets to external Ethernet interfaces. You can
configure and monitor the Ethernet interfaces, plus the preclassification and switching (PCX) logic. The Axxia
device can preclassify and switch traffic between Ethernet ports, which offloads this processing from the
intermediate engines.

There are two EIOA adapters in the AXX2500 device, EIOA0 and EIOA1.

The EIOA engine serves as a start engine or an end engine for an engine sequence, creating a new task on packet
arrival, and receiving a task for transmitting a processed packet.

 Modular Packet Processor (MPP)
The MPP engine classifies packets using highly multithreaded pattern processing engines which provide the
required processing and access items such as routing tables and access control lists. You can program the
MPP engine using the Functional Programming Language (FPL).

Based on the classification, the MPP engine (using the FPL) can perform the following additional
packet processing.

— Maintaining multiple hash tables for dynamic flow classification.
— Maintaining statistics and policing traffic flows.
— Editing packets, including segmenting packets, adding headers or footers, and duplicating, adding,

modifying, or deleting packet data.
— Performing CRC and checksum operations.

The MPP engine serves as a start engine or end engine for engine sequences.

 Packet Assembly Block (PAB)
The PAB engine performs both traditional reassembly functions and generalized packet data buffering for simple
segment-level editing and transmission.

The PAB engine is command driven, with commands sent to the PAB as tasks from another accelerator engine
such as the MPP engine or the CPU to establish and control reassemblies.

You can use the PAB engine to reassemble packet segments in a sequence that is contiguous, has gaps, or has
overlaps, with segments sent later overwriting all or part of previous segments. Gaps can be filled with pad data.
For example, you can change both the packet start and endpoints to delete header or trailer information. The
PAB engine can accept byte-level and bit-level offsets.

The PAB engine is an intermediate engine in engine sequences.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 11 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 1: Introduction to the Axxia Virtual Pipeline Technology
Accelerator Engines

 Packet Integrity Check (PIC)
The PIC engine calculates a cyclic redundancy check (CRC) or checksum value for a packet. The calculated CRC or
checksum value can verify an incoming packet, or calculate a new value for a modified packet. Optionally, the PIC
engine can write the calculated CRC or checksum value into the packet.

The PIC engine is an intermediate engine in engine sequences.

 Stream Editor (SED)
The SED engine is a programmable block editor for packets. For many applications, the SED is an efficient way to
modify, update, or add header information. It permits you to edit a packet — header, payload, and trailer — in
128-byte blocks.

The SED engine is an intermediate engine in engine sequences.

 Modular Traffic Manager (MTM)
The MTM engine performs packet buffer management and scheduling. You can program buffer
management policies.

You can configure scheduling structure hierarchy and shaping and scheduling services, with support for
weighted, shaped, and strict priority algorithms, with the option to add custom programmed scheduling and
custom programmed buffer management. The MTM engine supports up to six levels of scheduling.

The MTM engine is an intermediate engine in engine sequences.

 Security Protocol Processing (SPP)
The SPP engine accelerates the decryption and encryption of packets for many standard security protocols. It
performs packet integrity authentication, anti-replay protection, and programmable security protocol processing
that includes packet modifications and error checking.

The SPP engine is an intermediate engine in engine sequences.

 Deep Packet Inspection (DPI)
The DPI engine performs unanchored searches across one or more packets using standard regular expressions.
Based on regular expression search technology, the DPI engine supports simultaneous evaluation of up to one
million expressions.

The DPI engine is an intermediate engine in engine sequences.

 Timer Manager (TMGR)
The TMGR engine provides large-scale (millions) timer services to the CPUs and accelerator engines. The TMGR
engine supports timers for the following general purposes.

— Scheduling timer that expires after a set time.
— Time-out timer that prompts for an action.
— Process expiration timer that indicates a process is dead or has timed-out.

The TMGR engine is an intermediate engine in engine sequences.

 Memory Management Block (MMB)
The MMB engine responds to request from accelerator engines to allocate and de-allocate memory blocks. The
MMB engine manages data blocks in memory requested by the other engines. The MMB allocates the data blocks,
tracks the number of memory block accesses, and frees the memory when the block contents are no
longer needed.

Because accelerator engines use the MMB engine implicitly, you do not use this engine as part of an
engine sequence.

 Network Compute Adapter (NCA)
The Network Compute Adapter (NCA) transfers tasks between CPUs (internal or external) and the accelerator
engines. The NCA enables the host CPU to configure the all aspects of Virtual Pipeline instances and engine
sequences. The NCA can be a start engine or an end engine in an engine sequence.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 12 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 1: Introduction to the Axxia Virtual Pipeline Technology
Engine Sequences and Virtual Pipeline Instances

Engine Sequences and Virtual Pipeline Instances

A set of engines that define a processing path through the device is called an engine sequence.

An engine sequence can include three types of engines. Engines that can serve as the first or last engine in an engine
sequence are called start engines or end engines, depending on their location in the sequence. Intermediate engines
receive a task, optionally modify it, and send it to the next engine in the sequence.

Sequences optionally include one or more intermediate engines that receive, optionally modify and send the task to
next engine. Sequences complete with an end engine that receives and consumes the task.

Engines used in an engine sequence have the following characteristics.

 Start engines create and launch new tasks for packet processing.
 Intermediate engines do not generate new tasks and typically do not consume a received task.
 End engines consume the task.
 Multiple instances of the same intermediate engine type can exist.
 Some engines can be used as the start engine and the end engine.

The purpose of an engine sequence is to process tasks (and their associated packets). You can create an engine
sequence with two or more engines. Engine sequence processing begins with a task launch by the first engine in the
sequence, and concludes with the last engine in the sequence consuming that task. Each task is typically associated
with a packet, although there can be tasks without packets.

One or more engine sequences can make up a Virtual Pipeline instance. There are two types of
Virtual Pipeline instances.

 Simple Virtual Pipeline instances that contain only one engine sequence.
 Branching Virtual Pipeline instances having two or more branches (engine sequences), that share the same start

engine. The start engine selects an engine sequence and sends a task down the selected engine sequence.

Branching Virtual Pipeline Instances and Flows

In some cases, packets from the same source require a different processing path. For example, packets for a traffic flow
might contain both unencrypted and encrypted packets. The engine sequences required for both types are identical,
except for the addition of the Security Protocol Processor for the encrypted packet path.

Although you can design separate Simple Virtual Pipeline instances for the two cases, this approach duplicates the
common software processing to handle common packet operations.

The Axxia architecture provides a branching pipeline option that enables you to launch both cases using the same
function from the same start engine.

A Branching Virtual Pipeline instance defines two or more engine sequences, or branches, that share the same starting
engine, can use the same set of start engine output parameters, and are grouped together. The start engine for a
branching pipeline must be either the MPP, Expander, or CPU.

A user-defined set of packets that require the same type of processing is called a flow.To define a specific set of
processing parameters for each flow in a pipeline, you can define a flow table. You can use application software to
create the flow table. In the table, you use a programmable flow ID as an index to a set of parameter values that are
organized as a flow table entry. The start engine for the pipeline loads the flow table values into the task.

NOTE When the flow table is updated, any tasks already started, continue to use the original information that existed
at the time the tasks started.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 13 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 1: Introduction to the Axxia Virtual Pipeline Technology
Engine Sequences and Virtual Pipeline Instances

The Branching Virtual Pipeline instance launches in the start engine the same way that a single pipeline launches. The
start engine determines the appropriate branch for processing the packet based on information that is stored in a
separate data structure called a flow table, which the engine references using a flow ID.

A user-defined set of packets that require the same type of processing is called a flow. Flows are defined based on
some field or data in the packet, such as the source IP address. Each entry in a flow table contains parameters and
other information needed to process the packets in that flow. Packets with one set of flow IDs are routed down one
branch of the Virtual Pipeline instance, while packets with other flow IDs are routed differently.

The following figure shows a branching pipeline with two engine sequences.

Figure 2 Example Branching Virtual Pipeline Instance

Branching Virtual Pipeline instances are used primarily when the downstream processing in each branch requires a
similar set of parameters from the start engine such that the differences between the branches are manageable
simply as different entries in the flow table.

APIs for Managing Virtual Pipeline Instances

The run-time environment (RTE) is a set of functions and commands that can initialize, define, and control an Axxia
device. The RTE APIs for managing Virtual Pipeline instances at runtime include the following functions.

 ncp_vp_handle_get – Get the Virtual Pipeline instance handle given the type of launching engine (CPU, MPP,
EIOA and Expander) and the name of the Virtual Pipeline instance

 ncp_vp_id_get – Get the Virtual Pipeline id from its instance handle
 ncp_vp_num_flows_get – Get the number of flows defined for a Virtual Pipeline instance
 ncp_vp_launch_engine_check – Determine if a Virtual Pipeline instance is launched by the specified launch

engine
 ncp_vp_flow_data_func_set – Set encode and decode functions for a given engine sequence identified by vpHdl

and engineSeqId. The encode function is used by ncp_vp_flow_data_write() API to encode the flow data
structure into hardware format

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 14 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 1: Introduction to the Axxia Virtual Pipeline Technology
Task Communication

 ncp_vp_task_param_decode_func_set – Set task param decode function (used by ncp_task_recv() API of task I/O
module to decode the task parameters from the received task before sending them up to the application) for a
given engine sequence

 ncp_vp_task_param_encode_func_set – Set task param encode function (used by ncp_task_send() and
ncp_task_send_segments() APIs) of task I/O module to encode the task parameters) for a given
Virtual Pipeline instance

 ncp_vp_engine_seq_id_get – Get the engine sequence id given a Virtual Pipeline instance handle and the Engine
Sequence name

 ncp_vp_flow_data_write – Write a flow data entry for the given vpHdl, engineSeqId, and flowId
 ncp_vp_flow_data_read – Read a flow data entry for the given vpHdl, engineSeqId, and flowId

Task Communication

To pass information or data between engines, an Axxia device uses data structures called tasks. Tasks provide engines
with the following types of information.

 Packet data
 Information on how to process the packet
 The next engine to receive the task

Messaging in Pipelines

Engine sequence processing begins with the launching of a task by the first engine in the sequence, and ends with the
last engine in the sequence consuming that task. Each task is typically associated with a packet, although you can
have tasks without packets.

The following figure illustrates a simple engine sequence of three engines.

Figure 3 Engine Sequence Task Flow

The engine sequence task flow in the previous figure defines the following process.

1. Engine A, a start engine, creates and launches the new task, task X, to process packet number 1066.

2. Engine B, an intermediate engine, receives the task, reads its processing parameters, and optionally modifies the
task and its packet. When Engine B completes processing, it sends the task to Engine C.

3. Engine C, an end engine, receives the task and consumes it.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 15 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 1: Introduction to the Axxia Virtual Pipeline Technology
Task Communication

When launching a task, some start engines can make decisions about task processing that include the
following options.

 Launch a new task that continues processing the packet down another pipeline.
 Discard the packet and task.
 Perform any of the following programmed functions.

— Send out a different packet
— Send out multiple packets
— Generate an error.

For example, to send the packet forward in another pipeline, the start engine creates and launches a new task for
additional processing. The following figure shows the process.

Figure 4 Two Engine Sequences in a Processing Path

Passing Parameters Using Tasks

As part of the task, each engine receives a set of input parameters and transmits a set of output parameters.

The following sources provide the parameters the tasks can pass.

 The start engine can generate the input parameters for any engines in the pipeline, and include them in the task.
 Intermediate engines can calculate input parameters as part of their processing, and add them to the task for a

downstream engine in the engine sequence.

Task Management

The Axxia architecture provides the following features for managing tasks.

 Task Queueing – Each engine maintains queues for input tasks, called task receive queues, that have buffer
management capabilities.

 Sending Backpressure – Engines can send backpressure based on task buffer usage or other specific conditions.
 Mapping Task Priority – Task priority is a value from 0-7 that is mapped to a receive queue. This mapping

determines the queues to which the tasks are delivered.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 16 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 1: Introduction to the Axxia Virtual Pipeline Technology
Task Communication

 Maintaining Task Order – Tasks can optionally be created with a task order ID, a number used to ensure that an
engine can process packets from a given flow that have the same task order ID in arrival order without restricting
the relative ordering between packets of other flows which have different task order IDs. Engines that take
advantage of task order ID will have taskOrdering as an input parameter shown in the ASE when building a
pipeline that uses them.

 Load Balancing – For accelerator engines consisting of multiple parallel engines, the tasks can be used for load
balancing by distributing the tasks among the engines.

Task Receive Queues

Each engine maintains an address space in system memory for one or more task receive queues to store incoming
tasks. The number of queues varies, depending on the following engine type.

MPP – The MPP engine has four task receive queues.

NCA – The NCA supports up to 12 task receive queues, six per core.

EIOA – The EIOA engine has two task receive queues for each port.

MTM – The MTM engine has four task receive queues, two task receive queues for unicast traffic and two for multicast
traffic.

The task priority is a value from 0-7 that is mapped to a receive queue. This mapping determines the queues to which
the tasks are delivered. The following sources can define a task’s priority.

 The pipeline start engine. For example, the MPP defines the task priority as a parameter when it sends a new task.
 Flow data. The task priority is set by a value defined for a flow in a flow data table.
 The pipeline configuration.

You specify (in the ASE under Engines-<engine name>-TaskReceive) the mapping of the task priority to task receive
queues for each engine. For example, with four task receive queues, you can assign one queue as the highest priority,
and assign it tasks with priority 0 and 1. The next highest priority queue receives tasks with priority 2 and 3, and so on.

NOTE Priority 0 is special priority, that is, these tasks can not be dropped. It should be reserved for critical operations
and not for regular packet processing.

You can configure the arbitration of the task receive queue servicing using the following scheduling algorithms.

 Weighted Round Robin – Define weights for each task receive queue to define the servicing ratio between
queues.

 Strict Priority – The highest priority queue with traffic is always serviced.
 Rotating – Servicing that attempts to strictly maintain servicing queues in a sequence, even if queues have

previously been skipped because they were empty. For example, with four queues, if the current queue to be
serviced is two, but queues two and three do not have any tasks to service, the fourth queue is serviced. On the
next round servicing begins with the third queue, strictly maintaining the servicing sequence as if all queues
always have traffic.

 Round Robin – Round robin servicing begins servicing queues with the next queue in sequence after the
previously serviced queue. For example, with four queues, if the current queue to be serviced is two, but queues
two and three do not have any tasks to service, the fourth queue is serviced, then on the next round the first
queue is serviced, always following the last queue serviced.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 17 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 1: Introduction to the Axxia Virtual Pipeline Technology
Task Communication

Task Receive Queue Management

Task receive queues have thresholds levels that trigger actions. You can configure these thresholds and manage the
buffers, based on queue occupancy (as number of tasks or as 256B memory blocks) and system buffer availability.

Task buffer management behavior is defined by setting the following attributes for the buffer size of each queue, per
task priority.

 Backpressure – Sets the buffer fill level that triggers a backpressure signal.

Applications can send backpressure messages to monitor the current occupancy of the task queues and signal
the EIOA, MTM, MPP or CPU so they can react earlier. With the MPP and CPU the result of the backpressure signal
is programmable; the EIOA can send PAUSE frames and in the MTM, backpressure signals can be mapped to
queues and schedulers, based on the configuration or scripts.

 If the system configuration does not use the backpressure messages, packets are dropped based on the following
discard schemes of the queue.
— Discard Random – Sets the buffer fill size that triggers the Random Early Discard (RED) buffer management

policy. The behavior of the algorithm is based on the RED slope value, and the relationship to the Discard All
value.

— RED Slope – Defines the slope of a vector, from 0 to 1; with a larger slope value defining a more aggressive
buffer protection policy.This slope is used to determine the discard probability of incoming tasks when the
buffer size is in the range from Discard Random to Discard All. The vector is graphed as a buffer size (X axis
value) that triggers the discard probability (Y axis value) based on the RED slope value. The formula is Discard
Probability Percentage = Percentage of Buffer (Discard All - Discard RED) x (RED Slope).

— Discard All – Sets the buffer fill level that ends the RED algorithm and discards all new tasks.

NOTE Engines do not discard tasks with priority 0 when they violate receive queue thresholds. Priority 0 tasks are only
discarded based on the system buffer availability threshold for this task receive queue, configured for the Memory
Management Block.

When a new task is received, it is assigned to a queue depending on the task priority. Each queue belongs to a
Threshold group. Each group has a set of thresholds and a RED slope defined for each task priority. Those values are
compared to the buffer state to determine whether the new task is kept or discarded.

You define a set of these values for each task priority using Threshold Groups. Most engines have a single group; the
EIOA has two, and the NCA has eight. For example, you can select one of the two defined priority thresholds groups
for each port you configure for the EIOA, changing the buffer management policy per port.

The following figure shows two similar configurations. The first example uses a 1.0 RED slope value and the second
example uses a 0.25 RED slope value.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 18 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 1: Introduction to the Axxia Virtual Pipeline Technology
Task Communication

Figure 5 Sample RED Slope Discard Probability Examples

The higher 1.0 RED slope value has the more aggressive buffer protection behavior. Similarly, the maximum discard
probability for a given slope is equal to the slope value multiplied by one hundred.

Use the ASE to configure task priority assignments to task queues, task queue scheduling arbitration, and the
backpressure, discard random, and discard all thresholds for each task priority.

Maintaining Task Order

Typically, most engines keep packets in order as they process them by maintaining them in unique flows. For some
packet flows, it is important to process packets in order in accelerator engines that employ multiple parallel engines.
For example, the Deep Packet Inspection (DPI) engine has multiple internal threads for searching. If you are using the
DPI engine for cross-packet searches, you must ensure that, as a flow is processed by the DPI engine, the threads do
not process different packets of the flow out of order.

To provide this capability, the task includes a field for task ordering called the Task Order ID determined by the
application software. This field contains a compressed version of the flow ID. This 12-bit value ensures that, on engines
with multiple logical task receive queues, if tasks are arriving concurrently with the same Task Order ID and the same
task priority, they are assigned to the same subengine, to maintain their order.

For example, consider a high priority task with a Task Order ID of 6 arrives and is assigned to subengine 0. High priority
tasks with the same Task Order ID are dynamically assigned to subengine 0. This is irrespective of the configured
subengine assignment algorithm, such as load balancing. If a task with an Order ID of 6 arrives, and there are no other
tasks in the flow with the same ID, the configured queue algorithm is used to assign the task to a queue. In this case,
the task is assigned to subengine 1.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 19 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 1: Introduction to the Axxia Virtual Pipeline Technology
Flow Parameters

Additionally, unlike other tasks, those tasks with Task Order IDs, or ordered tasks, are treated as if they have not been
removed from the task receive queue until the processing of that task is complete. This ensures that while the engine
is processing an ordered task, a task that arrives with the same priority and Task Order ID is not assigned to a
different queue.

Load Balancing using Tasks

Tasks can be used for load balancing for engines with built-in load balancing capabilities. These accelerator engines
have multiple parallel- processing engines that are independently assigned tasks using the task receive queues.

The Axxia architecture has the following engines with built-in load balancing processing.

 DPI
 SPP
 Configure the NCA to provide multiple processors for pipeline processing

While the MPP has multiple parallel engines, tasks are balanced using task receive queues. Four task queues are used
to prioritize traffic entering the MPP engine. Load balancing uses high and low priority logical queues and tracks the
number of tasks being processed by that resource.

You can configure task load balancing to work in one of two modes.

 Processing engine – Engine uses high and low priority queues as a single resource. New tasks are given to the
processing engine with the lowest load in both high and low priority queues. This mode tends to provide a more
even distribution to the overall task load, but may not provide enough resources to high priority tasks.

 Priority – High priority tasks are given to the high priority task queue with the lowest load, and low priority tasks
are given to the low priority queue with the lowest load, without regard to processing engine. This mode provides
more resources to high priority tasks, but may not provide an even distribution to the overall task load.

The NCA does not use the task priority field for mapping tasks to queues. Priority with respect to the NCA queues is
determined by the rate at which each queue is serviced by the software.

Flow Parameters

To define a specific set of processing parameters for each processing flow in a pipeline you can define a flow table. You
can use application software to create the flow (associated RTE APIs are briefly mentioned later in this chapter). In the
table, you can use a programmable flow ID as an index to a set of parameter values that are organized as a flow table
entry. The start engine for the pipeline loads the flow table values into the task. Thus, if the flow table is updated, any
tasks that have already been launched will continue to use the original information that existed at the time they were
launched.

The constant pipeline parameter values you define at configuration are stored in the engine's local template memory
(which is not otherwise visible to application software), and the template is indexed by the task.

Use the ASE to manipulate the set of engines in an associated engine sequence. The ASE can determine what engines
send the output parameters and receive the input parameters on an octet boundary with an octet-level granularity.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 20 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 1: Introduction to the Axxia Virtual Pipeline Technology
Backpressure

Backpressure

This section introduces the concept of backpressure.

Backpressure Signals

To control congestion and to optimize the use of resources, every engine can send backpressure signals. These are
based on task receive queue buffer thresholds or specific conditions, such as port backpressure or other
programmable conditions.

Backpressure signals can generate messages to turn backpressure on or off. To avoid excessive signaling when a
buffer size hovers around the backpressure threshold and backpressure is asserted, engines use an ASE-configurable
attribute (hysteresis). This delays sending backpressure messages to turn off backpressure until the buffer occupancy
reaches a low enough value.

Although all engines can send backpressure signals, only four engines can receive the signals.

 NCA - Makes the backpressure signal status available to software
 MPP - Makes the backpressure signal status available to software
 EIOA - Backpressure messages can trigger signalling Ethernet backpressure using PAUSE frames
 MTM - Backpressures queues and schedulers

The CPU and MPP engines permit you to map the backpressure state of different queues using up to 32 flags each.
The Axxia device makes the status of these flags available to an FPL program running in the MPP, or to a program
running on the CPU. This availability is through variables defined in the ASE generated header files.

Engines can make decisions and take action depending on the backpressure status of a queue or set of queues. For
example.

 The ingress EIOA can read port-based backpressure signals to control the reception of new packets.
 The MTM can read backpressure signals to control packet scheduling queues and schedulers. A backpressured

queue or scheduler cannot transmit traffic.

You can configure the backpressure behavior in the following ways.

 Assign a single backpressure source to a single destination.
 Assign a single backpressure source to multiple destinations.
 Assign multiple backpressure signal sources to a single destination.
 Assign multiple backpressure signal sources to a multiple destinations.

Namespaces

A namespace is a region of memory that contains one or more engine tables. Engine tables are data structures that
some accelerator engines access and maintain.

The Axxia device provides a uniform way of creating and accessing engine tables. Namespaces provide an optimal
way to organize and assign the pool of system memory for engine tables, without requiring you to perform detailed
memory mapping.

Logically, the software partitions the memory into namespaces and engine tables that are indexed by a 24-bit value.
The maximum number of engine table entries in all namespaces that you can allocate is 16M, due to the 24-bit index.

The engine tables hold specific data structures required by individual accelerator engines. Optionally, a namespace
can contain more than one engine table.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 21 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 1: Introduction to the Axxia Virtual Pipeline Technology
Namespaces

You configure the maximum number of entries for namespaces and the entry sizes for the engine tables through the
ASE. Entries can be added or deleted dynamically.

Engine Tables

The following list describes the different types of engine tables that you can configure within namespaces.

 Scheduling queues, schedulers, and scheduling levels (MTM)
 Shared scheduling parameters (MTM)
 Stream Editor parameters (SED)
 Deep packet inspection contexts (DPI)
 Packet Assembly Block reassemblies (PAB)
 Stateful classification, policing and statistics tables (MPP state engine)
 Security Association information (SPP)
 Cancellable timer information (TMGR)

You can define these structures in your hardware configuration file through the ASE. You can populate them
dynamically as needed during processing.

Namespace Configuration

Use the ASE — under Namespaces > Namespace (name) — to configure each namespace. To configure a namespace,
define the number of entries. This value is the maximum number of entries in the namespace, and by extension the
maximum number of entries for all engine tables within the namespace. For each engine table, you define an entry
size (width).

For example, to perform IP Reassembly with a requirement to support 1000 simultaneous reassemblies, configure a
namespace with 1000 entries and a PABReassemblies engine table within that namespace. The ID of the first entry in
the namespace is called the base ID. The ASE can automatically assign the base ID values for all namespaces. The
figure below illustrates the base ID and number of entries for a namespace and the entry size for an engine table.

Figure 6 Base ID for Engine Namespace Table

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 22 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 1: Introduction to the Axxia Virtual Pipeline Technology
Namespaces

The Axxia architecture uses namespaces to support the following features.

 Engine tables can have different entry sizes. This improves memory usage because you do not have to define the
maximum entry size for the engine.

 By configuring multiple engine tables in the same namespace, the namespace reserves a range of IDs for use by
multiple engines. In this case, the same ID values can be used to index the corresponding entries in multiple
engine tables. This reduces the number of entry ID lookups required and the number of parameters passed
between the engines. For example, the MPP and the PAB could share the same range of IDs for a set of packet
flows.

 The architecture enables entries from multiple engine tables within a namespace to alternate within memory.
This memory layout is called striping. Striping allows entries from the different engine tables to be placed in the
same cache line. This layout can increase both locality of the memory accesses and performance of some
applications. The system cache has a line size of 256 bytes.

 Atomic write operations for engine table entries allow the software to update the engine table entries at runtime,
without risking a race condition. For example, the atomic write capability enables updating a scheduling
structure while the MTM is using it to schedule traffic.

Engine Table Characteristics

Each engine table has specific features to support its associated accelerator engine. See the engine-specific chapters
in this document for additional details specific to each engine.

 MPP State Engine
Use an engine table for the MPP State Engine to set up entries that serve as storage space for C-NP scripts that run
in the State Engine compute engine. This storage space is typically used to track state such as counters, statistics,
reassembly status, or policing results. Entry size can be up to 256 bytes. An individual entry can store multiple
items adjacent to each other within the entry. The FPL code uses a 24-bit index and an 8-bit offset to access the
engine table.

 PAB Engine
The Packet Assembly Block engine table reserves packet reassembly memory space. Each reassembly requires an
entry of either 128 bytes or 256 bytes. If you use timers for reassembly, you must use the 256-byte entry size. If
timers are not used for reassembly, use the 128-byte entry size.

 SED Engine
Although the Stream Editor engine table is not required for SED processing, using it provides additional editing
flexibility and features. The SED engine table can provide additional parameter bytes, alternative parameter
values, and up to 240 bytes of packet prepended data.

You can define one of the following engine tables for different types of SED parameters.

— Direct Parameters – Support 16 or 32 bytes of programmable parameters per entry. These parameters are
made available to the SED C-NP script.

— Indirect Parameters – Support up to 256 bytes of parameters in a fixed structure. This includes any data to be
prepended to the packet. This can also include SED commands that indicate, for example, which script to
execute or how to perform fragmentation. In addition, up to 32 bytes of indirect parameters can be made
available to the SED script.

 TMGR Engine

The engine table for the TMGR is required only if you are using the TMGR directly in a pipeline engine sequence to
support cancellable timers. Only the CPU and MPP engines can be used as start or end engines for the TMGR in a
pipeline engine sequence.

When timers are used indirectly in the MPP, for example, in a hash table entry, or by the PAB or MTM, an engine
table for the TMGR is not necessary.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 23 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 1: Introduction to the Axxia Virtual Pipeline Technology
Namespaces

 MTM Engine
The MTM employs the following types of namespace and engine table entities.

— MTM Scheduler Level – A special namespace used to define a level of scheduling hierarchy. Depending on
the level, you can add schedulers to it. The special namespace stores the schedulers as fixed format entries.

— MTM Scheduler – Schedulers are added as entries in the scheduler level namespace. Their configuration
information is stored in a fixed 64-byte format.

— MTM Queue – Queues do not belong to the MTM scheduler level namespace. They must be added as an
engine table in a different namespace. Queue configuration information is stored in a fixed 64-byte format
within the engine table.

— MTM Shared Parameters – Shared parameters do not belong to the MTM scheduler level namespace. This
optional engine table defines parameters used by the Buffer Traffic Manager and Traffic Shaper compute
engines of the MTM. The entry size is fixed at 32 bytes.

 DPI Engine
The DPI engine can use large or small memory buffers, called contexts, for its pattern matching functions. Small
contexts are defined as equal to or less than 256 bytes. The DPI engine automatically requests large context
memory when needed from the Memory Management Block (MMB). For small context storage space, the DPI
Contexts engine table must be defined with an entry size of either 32, 64, 128, or 256 bytes.

 SPP Engine
The Security Protocol Processor engine requires storage space to store information and status for each secure
connection. This space is called a security context (or a security association). You can configure the entry size up to
256 bytes, which depends on the protocol used, such as IPsec.

Namespaces with More than One Engine Table

The Axxia architecture defines namespaces that specify a range of IDs for a single engine or for multiple engines to
access. This capability enables the effective creation of parallel engine tables with identical ID ranges so common
traffic flows can use the same ID values in different engines.

For example, the MPP State Engine and PAB can use parallel engine tables in the same namespace. When
reassembling packets, the ID that the State Engine uses to refer to the packet reassembly can also be used by the PAB.
Typically, accelerator engines share data using tasks. If two or more engine tables reside in the same namespace, you
can configure the engine tables so that multiple engines can share data by reading and writing engine table entries.

Engine Table Entry Size and Memory Usage

One of the hardware requirements for the entries in engine tables is memory alignment. Each entry must start on a
boundary whose value is a power of 2.

For a namespace with a single engine table, this requirement implies that an entry always occupies a memory chunk
that is a power of 2. For example, consider the following figure. If the MPPStateEngine engine table has an entry
size of 64 and the size is changed so that the entry size is 48, the resulting engine table takes up the same amount of
memory, with 16 bytes wasted per entry. To reduce the memory footprint of this engine table, you must further
reduce the entry size to 32 bytes. The most memory-efficient entry sizes are power of 2 sizes.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 24 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 1: Introduction to the Axxia Virtual Pipeline Technology
Namespaces

Figure 7 Entry Size Comparison

Even though reducing entry size from 64 bytes to 48 bytes does not save any memory, it does save memory
bandwidth. This bandwidth saving occurs because less data needs to be transferred between the accelerator engine
and the memory subsystem. The savings can result in marginal performance improvements.

If a namespace has multiple engine tables that are not striped, the same memory efficiency issues apply to each
engine table in the namespace. The power of 2 entry sizes are the most memory efficient.

Striped engine tables provide the only case where entries without power of 2 entry sizes can save memory. For
example, when you stripe a SED engine table with an entry size of 16 bytes with an engine table for the MPP State
Engine with an entry size of 48 bytes, the result fits into a 64-byte cache line. Striping the engine tables together is
more memory efficient than leaving them non-striped.

Managing Namespaces and Engine Tables from FPL Software or Using the RTE

For most system designs, the namespaces and engine tables are created through the ASE, reserving memory for table
data. The engine tables are then populated and managed at run time, during operation.

After an engine table is defined and the software application starts adding and removing entries, a mechanism is
needed to keep track of the entry IDs. For example, when the software sets up a new application flow, it must add an
engine table entry. To add the entry it must find a free entry, mark it as in-use and use it to set up the flow. The LSI
hardware and software provide two ways to manage entries for a namespace: from an FPL program or through
RTE APIs.

Using the RTE APIs for Engine Table Management

The following list shows the RTE APIs for engine table management.

 ncp_rsrc_create – Create a resource enumeration object
 ncp_rsrc_destroy – Destroy a resource enumeration object
 ncp_rsrc_find – Find the named object
 ncp_rsrc_allocate – Allocate contiguous ID(s)
 ncp_rsrc_allocate_fixed – Allocate contiguous ID(s) starting at the given ID
 ncp_rsrc_free – Release previously allocated ID(s)
 ncp_rsrc_isset – Check whether the ID has already been reserved
 ncp_rsrc_query – Query the attributes for a given ID
 ncp_rsrc_dump – Dump a listing of the resources of a specified type or types to standard output (stdout)

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 25 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 1: Introduction to the Axxia Virtual Pipeline Technology
Namespaces

NOTE These APIs are generic, that is, they can manage a set of entry IDs for any purpose, including but not limited to
engine table ID management.

Engine Table Management using an FPL Program

The fplManaged attribute of a namespace element in the ASE designates whether the engine tables in a given
namespace are managed by an FPL program or through RTE APIs. The following restrictions apply.

 An FPL program can manage a maximum number of 16 engine tables.
 The FPL managed engine tables cannot have entries defined statically in the ASE. They should not be accessed

through RTE APIs.
 The number of entries in an FPL-managed engine table must be a multiple of 20 and cannot exceed 220

(approximately 1M).

Sharing Data Between Engine Tables

The Axxia architecture uses tasks as the most efficient way for engines in an engine sequence to communicate with
each other. This includes sending data from one engine to another. Task communication associates data with specific
packets and automatically maintains data and control information integrity.

You can also configure engine tables within a single namespace to share data with each other. This capability is only
available for specific accelerator engines.

Sharing data allows entry modifications done by one engine to be visible to another engine. However, sharing engine
table entries has a risk. If an entry contains control information, such as memory block addresses obtained from the
MMB, the possibility of error exists. If you corrupt the control information, you can lock up the device or corrupt
packet data.

 To avoid potential problems, only the following engine tables support data sharing.

 MPP State Engine table
 MTM Shared Parameters
 SED Direct Parameters

SED Indirect parameter entries contain control information, so they do not support sharing.

Because a system design normally has multiple packets in flight, data sharing can work differently from what is
expected in a single-threaded application, as shown in the following example.

 Assume the pipeline is MPP->SED-> (other engines). An engine table for the MPP State Engine shares data with a
SED Direct Parameters engine table.

 The MPP maintains byte and packet counts, while the SED reads and uses the counts.
 Seven packets are sent into this pipeline engine sequence, P1-P7, 100 bytes each.

The following figure shows an example of the shared engine table entry latency.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 26 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 1: Introduction to the Axxia Virtual Pipeline Technology
Namespaces

Figure 8 Shared Data Table Entry Latency

Consider what happens when the SED accesses packet P2. If the system worked with one packet at a time, the values
would be packets=2, bytes=200. However, by the time P2 gets to the SED, the subsequent packets, P3 and P4, have
been completed by the MPP and are waiting in the SED’s task receive queue. This means the SED reads the values from
the shared entry as packets=4, bytes=400. In general, when engine tables share data, it is difficult to predict the
packet and byte values the downstream engine reads. In this example, for the P2 values read by SED the only
prediction that can be made is that packets ≥ 2 and bytes ≥ 200.

Using the readThrough and writeThrough Modes in Sharing

Because there are readThrough and writeThrough flags for every engine table, setting them for shared tables does not
affect the performance of other engine tables. These attributes are configured per engine table and their values are
transferred to the hardware when the base IDs are assigned.

The readThrough and writeThrough attributes place additional constraints on base ID assignment. For example, the
area of address space used for engine tables is a factor. The ASE cannot define a namespace that contains an engine
table for the MPP State Engine with writeThrough set to true in the same area of internal memory as a namespace that
contains an engine table for the MPP State Engine with writeThrough set to false.

NOTE In general, do not enable the readThrough or writeThrough attributes unless you share data between engine
tables, because these attributes affect performance.

For the previous example with an MPP->SED pipeline, you must set writeThrough to true for the MPPStateEngine
engine table. No readThrough setting is required for the SED Direct Parameters table because the SED does not use
the L1 cache (caches namespace table contents between system cache and each engine).

If you have a pipeline engine sequence that includes (other engines) ->MTM->MPP and you need to share the data
between the MTM Shared Parameters and the MPP State Engine engine tables, set writeThrough to true for the MTM
Shared Parameters and readThrough to true for the MPP State Engine.

Using the Level 1 Cache

For a SED Direct Parameters engine table, there is no Level 1 cache. The SED reads the complete engine table entry for
every packet.

For MTM Shared Parameters, the MTM engine uses Level 1 cache. When readThrough is set to true, the merge is done
on 16-byte granularity.

The MPP State Engine has the following Level 1 caches.

 Stat (ALU) cache. It has 16-byte entries and is responsible for built in functions such as seIncrement32 and
seWrite32, that are invoked from the FPL code.

 State Engine script cache. It has 64-byte entries and is used for caching the contents of param_block1 and
param_block2.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 27 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 1: Introduction to the Axxia Virtual Pipeline Technology
Namespaces

The readThrough and writeThrough flags set for the MPP State Engine engine table apply to both L1 caches
simultaneously. When readThrough is set to true, the merge is done on a byte granularity for the first 16 bytes of the
cache entry size and on a 16-byte granularity for the remaining 48 bytes of the State Engine script cache.

MPP State Engine Data Sharing

Because the MPP uses multiple L1 caches, there are two cases of data sharing that you can use with the MPP.

Case 1: Sharing data between statistics calls and a State Engine script

 Both the readThrough and writeThrough attributes must be set to true for that MPP State Engine engine table.
 The FPL program must call barrier functions to make sure the corresponding writes complete.

The following example shows writing the data with an SE script and reading it with a statistics call.

seScript0R(SCRIPT_PARAM_ADDRESS)
seScriptBarrier(SCRIPT_PARAM_ADDRESS)
paramValue = seRead32(SCRIPT_PARAM_ADDRESS)

Assume the script takes 4 bytes of data in the parameter block and returns data as the 4 least significant bytes of the
result. To get the expected value, call the seStatBarrier function to ensure the preceding seWrite32 call
completes before the script is executed.

For more information about ensuring that preceding SE calls complete before the script executes, refer to the Axxia
Communication Processor Functional Programming Language (FPL) Programming Guide.

Case 2: Sharing data between the MPP and some other accelerator engine

In this case, readThrough or writeThrough should be set based on whether or not the MPP is reading or writing the
data. It is not necessary to call the seScriptBarrier/seStatBarrier functions in the FPL program because any outstanding
MPP write actions complete before the packet gets to the next engine.

Engine Table Memory Addressing

Within namespaces, you create and access engine tables without concern for the actual location in memory where the
engine tables are stored.

Logical Addressing

Each namespace defines a range of logical addresses for entries in one or more engine tables. The entry IDs are logical
addresses. They do not directly correspond to memory addresses. There is no direct relationship between namespaces
or engine tables and memory. Only addresses actually used by engine table entries reserve physical memory. The
result is there are no memory gaps or wasted memory for unused entry IDs in an engine table.

The base ID for a namespace is also a logical address. It is used to access engine table data that is significant in its
relationship with other namespaces and the available entry IDs. When the ASE assigns a base ID for a namespace, that
ID is part of the address used by either an FPL program or in an RTE API call to create and access entries in the engine
tables of that namespace. For example, the logical address used to access an engine table entry is the base ID of the
namespace plus the entry number. (This logical address is sometimes called the absolute ID).

ASE Static Entry Addressing

Engine table entries defined through the ASE are called static entries. The ASE gives each static entry an ID that is a
relative to the engine table. To access these engine table entries through software requires that the relative ID be
added to the base ID of the namespace.

If you define a namespace with two or more engine tables that share data, you must ensure you do not define values
for static entries with the same entry ID in more than one of the shared tables. Entries with the same index (entry ID)
point to the same data, and writing more than one overwrites any others. Defining a value for a single shared table
makes the data available to all of the shared engine tables in the namespace because they share the table entries.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 28 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 1: Introduction to the Axxia Virtual Pipeline Technology
Namespaces

Display Namespace Base Addresses

You can use the ASE to display a namespace or engine table base ID and the corresponding physical address in system
memory. Right-click the engine table in the ASE and select Print Base Addresses to print the following information.

 The absolute ID of the engine table entry
 Base address of the engine table entry in system memory. Reading the address in either hardware or the

simulation environment provides the entry content.
 For engine tables, the address of the first entry displays in the log.

The interactive debugging tool within the ASE also provides a command to display the physical memory address that
corresponds to an engine table entry.

Assigning Base IDs

The ASE software assigns the base IDs for namespaces (which apply to all engine tables in the namespace). LSI
recommends that you use the ASE to define all base IDs. The complexity of manual base ID assignment increases as
namespaces or engine tables are added or changed.

Optionally, you can manually define the base IDs, typically for testing purposes. If you manually define base IDs, use
the following rules:

 Specify the base ID values for each namespace so that namespaces used by the different application components
do not conflict.

 Because the hardware addresses engine table entries starting initially with the first 4 bits of the 24-bit entry ID,
engine tables with different attribute definitions, such as readThrough or writeThrough settings, cannot be
created in the same address range that shares any logical address with the same first four bits of address space.

 Similarly, two namespaces that have at least one type of engine table in common cannot be assigned logical
addresses that share the same first four bits of address space if the engine tables are defined with different
entry sizes.

You can manually define base IDs for some namespaces, while allowing the ASE to configure base IDs for
other namespaces.

Engine Table Code Generation

The ASE generates code based on your namespace and engine table configuration to help you access engine tables
from FPL programs or C programs that call RTE APIs.

When you create namespaces and engine tables in the ASE for your project, the ASE generates code (header files)
during compilation to enable you to reference the engine tables, even when the memory location of the table has
moved after a different compilation. The ASE generates FPL and C code header information and includes the header
files in your ASE project.

FPL Code Generation: Base IDs

The code generation for namespaces provides the baseID, numEntries, and entrySize definitions in the
generated FPL header file. The entrySize definition is only used for engine tables for the MPP State Engine.

#define NCP_NS_BASEID_name baseId
#define NCP_NS_NUM_ENTRIES_name value
#define NCP_NS_ENTRY_SIZE_name value

For example:

#define NCP_NS_BASEID_IPSecOut 0x100000
#define NCP_NS_NUM_ENTRIES_IPSecOut 0x000100
#define NCP_NS_ENTRY_SIZE_statistics 256

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 29 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 1: Introduction to the Axxia Virtual Pipeline Technology
Troubleshooting

In this example, if the IPSecOut namespace contains an engine table with entries IPSecContext(0),
IPSecContext(1), and IPSecContext(2), an FPL program can use the following code to access these entries.

myTree : 10.1.1.1 fReturn(NCP_NS_BASEID_IPSecOut + 0);
myTree : 10.1.1.2 fReturn(NCP_NS_BASEID_IPSecOut + 1);
myTree : 10.1.1.3 fReturn(NCP_NS_BASEID_IPSecOut + 2);
myTree : BITS:32 invalidIpAddress();

FPL Code Generation: SET UP NAMESPACE

If a namespace is managed by an FPL program, the ASE also generates code in addition to the base ID definition.

#define NCP_NS_name fplId
SETUP NAMESPACE(NCP_NS_name, baseId, numEntries);

For example:

#define NCP_NS_atmReassembly 0x1
SETUP NAMESPACE(NCP_NS_atmReassembly, 0x000000, 0x010000);

Here, the fplId values are the numbers between 0 and 15 automatically assigned by the ASE to FPL-managed
namespaces. There can be at most 16 FPL-managed namespaces. The fplId is the hardware resource number from
which entry IDs are allocated and the name value is the software-managed resource name.

The SETUP NAMESPACE directive enables you to use the hash engine of the MPP to manage the entry IDs. For
example, allocate a new entry ID by invoking:

fHashAllocateId(NCP_NS_atmReassembly)

C Code Generation

The ASE generates the following definitions for C code that calls RTE APIs.

#define NCP_NS_name "name"

For example:

#define NCP_NS_saStateEngine "saStateEngine"

You can use these constants instead of hard-coding the names of individual namespaces. If a namespace name
changes in the hardware configuration file of your ASE project, the name of any hard-coded #define constant will
not change and show up as a compile error. If you do not use these generated constants, changes to namespace
names are only detected at run time.

Troubleshooting

This section provides troubleshooting information.

Engine Monitoring

The Axxia device provides the following mechanisms for monitoring engine processing and tracking errors.

 Task Error – The task contains an internal flag that can be set by the hardware under certain conditions to
indicate an error with that task. This is an internal flag that is typically set by hardware. For example, a task error bit
might be set when the engine runs out of memory and cannot process the task. Different engines process task
errors differently.

 Engine Interrupts – Each engine supports interrupts that are tied to specific internal conditions. You can enable
the interrupts with the RTE APIs. When enabled, these interrupts can notify the host processor that an interrupt
condition is met. Engines have two interrupt types, service interrupts and failure interrupts.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 30 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 1: Introduction to the Axxia Virtual Pipeline Technology
Troubleshooting

 Task Monitoring – Each engine can be configured to monitor packet traffic by counting tasks processed, tasks
dropped, or other task characteristics you can select from the available engine counters. These SMON counters
can be used to help debug pipeline processing by identifying engines with any significant bottlenecks or errors.

 Conditional Logging – The Axxia device enables task tracing for engines logging tasks that match specific
conditions you define.

Task Error

The task contains a Task Error bit that indicates when the packet data for a task is corrupted. The packet data can be
corrupted and the task error bit set due to the following events.

 When the task is being generated, there is an error writing the packet to memory.
 When the EIOA packet buffer overflows when receiving packet data for a task.
 When an engine determines the task packet data is corrupt.

Depending on the engine, the behavior of the engine in generating or reacting to the task error bit can be different.
The following table shows the behavior for each engine.

Table 1 Engine Actions Upon Receiving a Task with a Task Error Bit

Engine Interrupts

Each engine has a set of host processor interrupts that you can enable or mask using the RTE.

The engines support two types of interrupts.

 Service Interrupts - These interrupts signal to the host processor that the engine requires service from the CPU.
For example, when the NCA completes a DMA operation, it triggers an interrupt that notifies the CPU that the
operation is complete.

 Failure Interrupts - These interrupts notify the host processor of a specific failure with engine processing. For
example, a failure interrupt could be triggered by a FIFO overflow or a packet processing error.

Enable the interrupts to monitor the set of conditions for each engine to which you want the host processor
to respond.

Engine Generates Task
Errors Action when Receiving a Task with a Task Error Bit

MPP Yes Starts the Pattern Processing Engine context with the trap handler, and uses the task error as
the error condition.

MTM No, does not write
packet data

Passes the input task error out with the output task.

NCA Yes Sends the input task error indication to the CPU in the input task header it forms for the CPU.

EIOA Yes Writes an incorrect CRC on the Ethernet packet

SPP Yes Bypasses security processing, and forwards the task with the task error set.

DPI Yes Bypasses pattern inspection and forwards the task with the task error set.

SED Yes Does no packet editing and forwards the task with the task error set.

PIC Yes Does not perform processing on the packet and forwards the task with the task error set.

PAB Yes Does not read task packet data and marks the reassembly context with an exception with task
error as the cause. Any task generated from the reassembly context has the task error set.

TMGR No Ignores the task error.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 31 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 1: Introduction to the Axxia Virtual Pipeline Technology
Troubleshooting

Task Monitoring

There are two ways to monitor tasks.

 Tracing tasks using task logs. This technique can incur additional processing time.
 Tracking engine counters for processed tasks. This technique uses dedicated hardware in the engines and does

not affect timing.

Each accelerator engine has monitoring capabilities provided by a statistics and monitoring (SMON) block.

Each accelerator engine maintains a common set of statistics on tasks and additional statistics about engine-specific
functions. You can select counters to monitor using the SMON block. You can configure two SMON counters for each
engine. Depending on the engine, you can configure the SMON counters to monitor one or more set of task types,
such as tasks received or transmitted, and the processing contexts.

You can use the SMON block to debug pipeline processing, such as an engine that is dropping a large number of tasks.

Conditional Logging

The task trace facility enables you to use the accelerator engines to log the tasks they send. Use this feature to debug
the processing path by recording how many times tasks are processed by the engines or, optionally, engine output
task information.

Tasks can be logged using one of the following modes.

 Task-based logging – Tasks are launched from a start engine with the debugging flag set, causing each engine
that sends the task to log when the task is sent.

 Engine-based logging – The engine is configured to log all tasks that the engine sends.

You configure each engine to maintain its own separate task log. Engines write task logs to dedicated locations in
system memory until the memory fills up or writes continuously in a circular fashion.

There are additional mechanisms that provides filtered logging. For example, you can set up the filter to trace only
tasks with certain parameter bytes or PDU bytes.

A module within each accelerator engine enables portions of an output task to be copied to a trace log for
post-processing and analysis. The task structure uses the following fields for tracing.

 Trace Enable – Enables start engines to trace a task.
 Debug Field Valid – Selects one of two possible formats for the debug field.
 Debug Field – An 8-byte field that supports two possible formats.

— Trace-oriented format that holds software-generated information including a sequence number and 24 bits
defined by software, and two flags indicating a dropped task and a task that was generated by a timer.

— Performance-oriented format that tracks the engine-to-engine timestamps.

The Axxia task tracing facility provides the following features.

 Trace enabling by pipeline start engines
 Trace filtering

— Pattern matching tracking – You can define a 24-bit pattern and count the tasks with headers that match
the pattern.

— Conditional start and stop – When a configured number of pattern matches have been counted, the start or
stop trigger is asserted.

 Statically allocated memory region for trace logs

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 32 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 1: Introduction to the Axxia Virtual Pipeline Technology
Troubleshooting

Relevant RTE APIs for task tracing include the following functions.

 ncp_task_trace_enable – Enables task tracing for the specified engine
 ncp_task_trace_disable – Disables task tracing for the specified engine
 ncp_task_trace_trigger_enable – Enables triggering for task tracing in the specified engine
 ncp_task_trace_trigger_disable – Disables triggering for task tracing in the specified engine
 ncp_task_trace_trigger_set – Specifies trigger conditions that must be satisfied for tracing to occur
 ncp_task_trace_buffer_get – Retrieves specified engine’s trace buffer
 ncp_task_trace_buffer_clear – Clears specified engine’s trace buffer

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 33 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 2: Modular Packet Processor (MPP) Engine
Overview

Chapter 2: Modular Packet Processor (MPP) Engine

The MPP is an enhanced version of LSI APP classifier technology. It is programmed using the Functional Programming
Language (FPL), and has support engines that are called using the FPL functions.

Overview

The MPP design is an enhanced version of LSI Advanced Packet Processor (APP) classifier technology. You program the
MPP engine using the Functional Programming Language (FPL), using the FPL functions to call other accelerator
engines. The Axxia MPP provides more than 20 Gb/s of packet processing bandwidth, using IMIX traffic and light
touch classification. IMIX traffic is defined as: 56% 64-byte packets, 20% 576-byte packets, and 24% 1518-byte packets.

The MPP includes the following features.

 Up to four pattern-processing engines (PPEs) with 32 processing threads (which are called contexts) each. Each
pattern processing engine contains a flow engine and a tree engine.

 On-chip flow engine instruction memory holding 16K flow instructions per PPE that can share the memory
between two PPEs to support an effective size of 32K flow instructions.

 Access to 256 KB of on-chip memory for storing classification database information (32 K tree engine instructions)
that are expected to be used frequently. Each tree engine inside a PPE also has a dedicated micro-root on-chip
memory that holds 1K tree instructions.

 A single DDR3 interface for access to optional external classification database (for example, tree instruction)
memory.

 A Hash engine for hardware-assisted exact match-based lookups, namespace ID management, and timer
management.

 A State engine for maintaining state and statistics, and for executing script-based state and policing scripts.
 A Function Bus Interface (FBI) to MPP subengines such as the Hash engine and State engine. The FBI logic also

contains 16 global registers and the order queue logic.
 A Prequeue Modifier (PQM) for editing, adding, deleting, or duplicating packet data.
 A Semaphore subengine for locking shared resources for atomic operations.
 An MPP Packet Integrity Check (MPP-PIC) subengine, for calculating CRCs or checksums.

MPP Classification Capabilities

The MPP classification engine is a fully programmable classifier that supports simple, complex and hierarchical
classification. Its features include:

 Flexible support for nested protocols.
 Hash function based flow identification generation for load balancing.
 Stateful classification with dynamically allocated memory for per flow state.
 Support for variable header positions and classification lengths.

Some examples of classification capabilities include the ability to recognize:

 RLC frames, to generate flow ID based on RLC header.
 TCP flows, to perform TCP termination.
 MAC addresses and VLAN tags, to forward packets.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 34 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 2: Modular Packet Processor (MPP) Engine
Features

Features

This section introduces the MPP Engine features and the various subengine components.

Pattern Processing Subengines

The pattern processing subengines (PPEs) perform packet classification using user-defined patterns. All tree patterns
are stored in the classification memory. The classification memory includes both on-chip (1 MB) and off-chip
classification memories. Use on-chip memory as much as possible to achieve better engine performance for lookup
functions, because on-chip memory has less access latency.

Each of the eight PPEs has internal logic that executes flow control and pattern matching instructions and enables the
following classification applications.

 Routing tables
 Access Control Lists (ACLs)
 Flow Identification

Hash Subengine

The Hash subengine manages hash tree entries in a hardware-maintained hash table and provides hardware-assisted
Namespace and Timer resource allocation. The FPL compiler optimizes the hash memory usage and validates the
hash memory capacity, as necessary.

Hash subengine features include the following.

 Performs basic hash table operations.
 Is configurable.
 Cannot be modified from the CPU.
 Can be checked and stopped manually.
 Time-out events can be manually checked and stopped.
 Time-out events are invoked by hardware.
 Configurable static and overflow memory.

State Subengine

The State subengine maintains and retrieves information whose lifetime can span multiple packets. Typically, the
State engine helps provide the policing functions, statistics functions, and OAM functions. For more complicated
applications, the State engine can provide per session protocol state information or other general purpose state
maintenance functions.

The State subengine supports the following features.

 Performs computations and stores state information for the following common uses.
— Policing.
— State maintenance.
— Parameter sharing with other accelerator engines.

 Reports overflow and underflow events for statistical functions and reports special events.
 Provides the following processing functions.

— Programmable script function that runs a C-NP script.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 35 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 2: Modular Packet Processor (MPP) Engine
Features

— Built-in FPL functions.
 Arithmetic functions.
 Boolean logic functions and bit search functions.
 Memory read and write functions and barrier functions.
 Sequence generation, checking, and timestamp functions.

 Shares parameters between the built-in and programmable functions.

Prequeue Modifier

The Prequeue Modifier (PQM) edits the packet in the MPP engine, typically before other accelerator engines modify or
schedule a packet. The PQM does packet data insertions, deletions, modifications, and segmentation. Invoke the PQM
with FPL functions.

Packet modification within the PQM can improve application performance to offload another accelerator engine, if
the MPP engine has enough flow cycles available.

The PQM has the following features.

 Evaluates the PQM-specific FPL function calls that it receives from the Function Bus Interface (FBI) associated with
a PDU.

 Determines whether to split the PDU into multiple pieces or delete it.
 Determines whether to modify the PDU or insert specific data (any part of the data stream).
 Determines whether to transmit the PDU out of the MPP.
 Consists of the context number, an 8-bit function call number, and up to 105 bits of function specific parameters.
 Provides the termination function to reset all state that is associated with the processing context.
 Provides the function call to set up the launch parameter information for output task processing.
 A work list is built after the PQM calls an FPL function.

The PQM has the following usage restrictions.

 PQM functions must not be called when the context owns an unordered semaphore.
 The PQM must deal with a different data stream than the data stream the MPP uses to perform classification. If

you use the PQM to modify packet data, you cannot perform classification on the just-modified packet data.

Semaphore Subengine

When the operation order of the packet with MPP contexts must be considered, use the Semaphore subengine. It
defines a sequence of FPL functions to be called atomically and in packet arrival order. It also provides semaphore
locks to ensure access to a shared resource operation between context threads is atomic.

The Semaphore subengine is invoked synchronously with the MPP engine and supports the following features.

 Four groups of semaphores, each having semaphore request and release functionality.
— A semaphore request function requests exclusive access to one out of 1024 available locks. When the

requested lock is available, the lock is marked as locked and the context is returned to the scheduler.
— A semaphore release function releases the lock on the semaphore that was locked by the context on which

this function was issued. When the semaphore release function is not issued to release the context owning
the lock, the termination of context results in the release of the locks.

 A 10-bit unique flow ID used as an identifier among the different flows. You can use the hash key and index
generation capability to compress multiple fields into the 10-bit flow ID.

 Ordered or unordered semaphore calls that are determined by FPL code.
— A single ordered call to a given semaphore group can only be performed during the context lifetime.
— A context can acquire an ordered semaphore, release it, and then reacquire it as an unordered semaphore.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 36 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 2: Modular Packet Processor (MPP) Engine
MPP and Engine Sequence Interaction

MPP Packet Integrity Check Subengine

The MPP Packet Integrity Check (MPP-PIC) subengine operates in a manner similar to the Packet Integrity Check (PIC)
accelerator engine. It performs a subset of PIC functions within the MPP engine, such as checking IP checksums and
header CRCs. Optimization of the MPP-PIC subengine provides maximum performance to eliminate the overhead
incurred by using the external PIC engine for small packet calculation.

The MPP-PIC subengine offers standard CRC and generic CRC calculations. Although you can use
software-programmed CRC polynomials, the usage comes with a performance cost, because software-programmed
CRCs require up to 16 times longer to complete.

The MPP-PIC subengine is accessible by the PPEs by using an FPL function call. The parameters in the FPL function
control the operation performed by the MPP-PIC engine, which performs the requested operation and returns the
result to the PPE. The MPP-PIC subengine does not modify the packet data.

The MPP-PIC subengine supports the following features.

 Up to four CRCs to supply the polynomial.
 Layer 4 protocol checksum operations that permit you to do IP header checksum, including IPv6 extension

headers and IPv4 options headers.
 Generic checksum you can use to calculate a checksum on any portion of the packet.
 The MPP-PIC subengine is multithreaded and does not maintain operation order.

The MPP and PIC accelerator engines use the task ring and exist as separate engines in pipelines. You can access the
MPP-PIC subengine only through FPL functions.

MPP and Engine Sequence Interaction

The MPP is a programmable engine for processing traffic and can be a start engine or an end engine.

When the MPP is an end engine, the ASE software generates a root function in the FPL code, in the FPL header file, that
is called to start MPP processing for that engine sequence. When the MPP is a start engine, the root function uses the
FPL transmit function that starts a task down another engine sequence.

A header file created by the ASE contains information on root functions, engine sequences, and launch functions. It
also contains backpressure information and namespace definitions.

The MPP can also be a backpressure aggregation point. You can monitor the backpressure status of up to 32 different
backpressure signals in the MPP. You can use this information to avoid congestion later in the packet path by
discarding packets earlier in the processing. This avoids discarding packets after significant processing has taken
place, and helps prevent high-priority traffic from hitting congestion bottlenecks.

MPP Block Diagram

MPP Pattern Processing Engines

The MPP contains four pattern processing engines (PPEs) that are programmable with the Functional Programming
Language (FPL). Each PPE supports up to 32 contexts, which are treated as process threads. With the four PPEs, the
MPP engine supports up to 128 processing threads. Each thread processes using a run-to-completion model,
supported by a scheduler that assigns new tasks to threads as they become free

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 37 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 2: Modular Packet Processor (MPP) Engine
MPP Block Diagram

The following figure shows the PPEs, MPP subengines, and the interconnect to the Virtual Pipeline instance.

Figure 9 MPP Block Design

Each PPE contains the following elements.

 One flow engine and one tree engine.
 A flow engine that runs flow instructions for program control flow.
 A tree engine that runs tree instructions to perform longest prefix matching-based pattern matching. The MPP

uses the matching for lookups and decision-making. The tree engine can have a dedicated 1000 tree instructions
stored in memory.

 16 K words of cache for flow instructions. This is low access latency internal memory for the first 16 K words of
flow instructions. The remaining flow instructions are stored in external memory, either on or off the Axxia device.

 1 K words of cache for tree memory. This is low access latency internal memory for the first 1 K words of tree
instructions. The remaining tree instructions are stored in external memory, either on or off the Axxia device.

 An interface to the Functional Bus Interface (FBI) that provides access to built-in functions.
 Connection to a classification memory fabric that connects to eight internal and one external classification

memory controllers. Each internal classification memory controller connects to a 16K words of classification
memory (8 x16K words equals 128K words equals 1 MB), and one external classification memory controller
connects to the external DDR3 memory.

MPP Hash Engine

The MPP Hash Engine is a support engine that is invoked by FPL function calls. The Hash Engine is useful for
wire-speed learning and stateful processing. The Hash Engine has the following features.

 Supports exact match lookup, insert, and delete operations
 Number of hash table entries limited only by SDRAM capacity.
 Virtually unlimited number of logical hash tables supported.
 Hash entries can also be associated with timers and used for dynamic and atomic namespace ID allocation. You

can easily set time-out values, for example, for packet reassembly.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 38 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 2: Modular Packet Processor (MPP) Engine
MPP Block Diagram

MPP State Engine

The State Engine allows the MPP to perform computations and to store state in Namespace tables for policing, state
maintenance, and parameter sharing. It also reports overflow and underflow events for statistical functions and
reports special events by setting a flag with the compute engine scripts.

It provides the following types of processing functions.

 Built-in function – Processed by dedicated hardware.
 Programmable function – Runs a C-NP script on the MPP compute engine.

You invoke the State Engine functions using FPL function calls. The State Engine enables the coherent sharing of
parameters between the built-in and programmable functions.

MPP Prequeue Modifier (PQM)

The Prequeue Modifier modifies the packet in the MPP, typically before the packet is modified or scheduled by other
accelerator engines. The PQM performs packet data insertions, deletions, modifications, and segmentation. You
invoke the PQM primarily with the fModifyPdu and fTransmitData FPL functions.

The MPP performs classification on unmodified packet data. If you use the PQM to modify packet data, you cannot
then perform classification on the just-modified packet data. To perform MPP classification on the modified packet
data, you would need to send the packet through the MPP again.

PQM data modification functions build a worklist which is applied to the packet when it is transmitted.

For additional information about the Prequeue Modifier, see the Packet Modification section, in the Modular Packet
Processor Engine chapter.

MPP Semaphore Subengine

For most packet applications, you do not have to consider order of operation of packet processing contexts in the
MPP. If that is required, the Semaphore subengine defines a sequence of FPL functions to be called atomically and in
packet arrival order, using flow locking. The Semaphore Engine ensures exclusive access to a shared resource allowing
for atomic operations between context threads.

The Semaphore subengine defines up to four groups of semaphores supported with a 10-bit flow ID, used to reduce
the chance of a false dependency between flows. You can use the hash key and index generation capability to
compress multiple fields into the 10-bit flow ID.

For additional information about the Semiphore Subengine, see the Atomic Access Using Semaphores section, in the
Modular Packet Processor Engine chapter.

MPP Packet Integrity Check Subengine

The MPP Packet Integrity Check (MPP-PIC) subengine, which operates similarly to the Packet Integrity Check (PIC)
accelerator engine, performs a subset of PIC functions, such as checking IP checksums and header CRCs, without
leaving the MPP. It offers several standard CRCs, as well as a generic CRC capability that allows you to use
software-programmed CRC polynomials, although with a performance cost. Software-programmed CRCs can take as
much as 16 times the duration it takes hardware CRCs to complete.

The MPP-PIC is accessible by the PPEs using an FPL function call. The parameters in the FPL function call control the
operation performed by the MPP-PIC. The MPP PIC performs the requested operation and returns the result to the
PPE. The MPP PIC does not modify the packet data.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 39 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 2: Modular Packet Processor (MPP) Engine
Input and Output Parameters

Table 2 MPP PIC Supported CRC protocols.

In addition, you can specify up to four CRCs in which you supply the polynomial.

The MPP-PIC is multithreaded and does not maintain operation order.

The MPP and PIC accelerator engines exist as separate engines in engine sequences, but the MPP-PIC is a subengine to
the MPP that you can only access through FPL functions.

Input and Output Parameters

MPP End Engine Input Task Parameters

When the MPP is an end engine, you can configure it to receive up to 32 bytes of input parameters. Using the ASE, you
can split the 32 bytes of input parameters, on a byte level, to match the size of the output task parameters from
engines earlier in the pipeline. The input task parameters you create this way are generated in the header file, and the
variables are populated with the correct values at run time through the template merge process.

The 32 bytes of parameters are loaded into the eight $iParam variables ($iParam0 through $iParam7) in 4-byte
increments. The engine sequence ID can be included in iParam7 by the MPP.

The MPP also receives the following system-generated parameters that describe task attributes and state.

 32 bits from the Task Header that includes:
— Input task queue ID (8 bits)
— Task priority (3 bits) – A value from 0-7 that defines the task priority
— taskError flag (1 bit) – If set, invoke the error handler.
— timerValid flag (1 bit) – If set, override the root function defined for the engine sequence and call the root

function with ID 255, the timer boot code function.
— launchID (18 bits) — The launching ID for the task. The lower 8 bits define the launching engine. The task

engine IDs are:

ncp_engine_min = 0

ncp_engine_eioa0 = 1

ncp_engine_timer =2

ncp_engine_pab = 3

ncp_engine_mpp = 4

ncp_engine_spp = 5

CRC Protocol Bit Polynomial

ROHC-3 x3 + x1 + 1

CPS-5 x5 + x2 + 1

UTRAN-7 x7 + x6 + x2 + 1

ROHC-7 x7 + x6 + x3 + x2 + x1 + 1

ATM-8_0x00 x8 + x2 + x1 + 1

ATM-8_0x55 x8 + x2 + x1 + 1

ROHC-8 x8 + x2 + x1 + 1

OAM-10 x10 + x9 + x5 + x4 + x1 + 1

UTRAN-11 x11 + x9 + x8 + x2 + x1 + 1

UTRAN-16 x16 + x15 + x2 + 1

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 40 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 2: Modular Packet Processor (MPP) Engine
Input and Output Parameters

ncp_engine_sed = 6

ncp_engine_cpu = 7

ncp_engine_dpi = 8

ncp_engine_pic = 9

ncp_engine_mtm = 10

ncp_engine_expander = 11

ncp_engine_eioa1 = 12

ncp_engine_max = 15

NOTE The most significant bit of the Task Header is reserved.

 queueFillLevel (32 bits) — The input task queue fill level in bytes.
 rootAddress (20 bits) — The root function address for the Virtual Pipeline instance, which is useful for debugging.
 context (7 bits) — The current context ID. The upper two bits are the PPE ID; the lower five bits are the flow or

thread ID for the PPE. Each PPE supports 32 threads.
 flowControl (32 bits) — A bit mapped register value that provides you information on the backpressure state for

up to 32 different engine task receive queues and other objects, such as MTM queues or schedulers, MTM scripts,
and output ports. You define the mapping in the ASE in the MPP engine configuration under the Backpressure
Destinations element. The destination variable names you assign to backpressure signal sources are added as
variables to the generated FPL header file.

MPP Start Engine Output Task Parameters

As a start engine, the MPP can send up to 32 bytes of output task parameters.

With the ASE, you define those 32 bytes as the parameters the downstream engines receive from the MPP. You also
use the ASE to generate the header file with the prototypes for the functions that pass those parameters to the task
structure.

Figure 10 MPP Output Task Parameter Passing

Depending on the way you define the parameters in the ASE, you can have the task parameters passed out of the MPP
using a single function, fTaskParms(), or you can use multiple functions.

By using the Stage capabilities of the ASE, you can group the parameters for multiple vpParms() functions that are
outlined with the generated header file. You can send parameters as they are calculated, instead of having to store
them in FPL register space until they are sent.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 41 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 2: Modular Packet Processor (MPP) Engine
Packet Processing

Packet Processing

The MPP can classify based on any combination of fields anywhere in the packet, along with any associated task
parameters, policing and state maintenance script results, and any previously stored state information. The set of
fields that the FPL program examines can be based on the contents of previous fields along with any state information
from previous processing.

The compiled FPL program runs on the MPP pattern processing engines. When a packet arrives on an MPP task queue,
the MPP assigns the incoming task to an available processing context and automatically invokes the FPL program at
the entry point for the associated Virtual Pipeline instance to classify and process the packet. Each processing context
runs the FPL program concurrently – each pattern processing engine runs in parallel. The FPL program uses function
calls to invoke subengines as needed to support the classification and state maintenance processing. The MPP
multiple contexts and its simultaneous multithreading execution model allow it to effectively tolerate variable
latencies due to memory accesses and subengine execution.

Based on the results of classification, the FPL program instructs the MPP to launch packets and commands as needed
for downstream engines. For more information on FPL for the Axxia devices, refer to the Axxia Communication
Processor Functional Programming Language (FPL) Programming Guide.

C-NP is the other programming language for the MPP. You use C-NP to program the compute engine inside the MPP
state engine. You can write programs using C-NP and the programs are executed in the MPP state engine compute
engine. You can call state engine functions as subroutines from your FPL programs to perform policing, statistics, and
state maintenance functions. For more information on how C-NP is used in the Axxia devices, refer to the Axxia
Communication C-NP Language Reference Manual and the Axxia Communication Processor Compute Engine
Programming Guide.

Classification

A key aspect of classification processing is pattern matching and table look-ups. The MPP supports two mechanisms
to support this functionality: trees (which use the tree engine) and hash tables (which use the hash engine).

Tree-based pattern matching supports longest prefix match, exact match, range match, multi-field classification, and
ordered search. Trees can only be updated from the host processor so the tree mechanism is best suited for tables
which need no more than tens of thousands of updates per second.

Hash-based pattern matching supports exact matching and dynamic match key update through FPL, and it allows
timer and namespace ID management to atomically be attached to hash engine calls. FPL uses a hash tree to
efficiently manage hash key generation over a potentially disconnected set of packet fields and other data.
Hash-based matching is ideal for high pattern learn rates (millions of learns per second are supported) and is also ideal
for exact matching of wide bit patterns. It is also very efficient when a pattern needs to be associated with a timer
and/or a namespace ID.

In contrast, the tree engine supports more versatile matching capabilities but its performance is inversely
proportional to the total width of the pattern being matched. However, the hash engine is not a limitless resource and
it does consume a nontrivial amount of system memory bandwidth.

For more information about using tree-based or hash-based matching, as well as flow function usage in FPL programs,
refer to the Axxia Communication Processor Functional Programming Language (FPL) Programming Guide.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 42 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 2: Modular Packet Processor (MPP) Engine
Packet Processing

Dynamic Resource Management

Hash-based pattern matching permits timer and namespace ID management to atomically be attached to hash
engine calls. The hash engine can perform the following hash table operations.

 Search a hash table for a key match and return the associated result value.
 Insert a new entry.
 Update an existing entry if it exists, else insert a new entry.
 Delete an entry.
 Manage FPL timers and dynamic name allocation.

When managing timers the associated hash entry holds a timer. When managing namespace IDs the associated hash
entry holds a namespace ID. The following types of hash entries are based on what type of information the entry
associates with the hash key.

 A maximum of 51 bits of data (future functionality will support hashable trees, a function ID so that a hashable
tree can be called a function just like a normal tree function can).

 Allocated namespace ID
 Timestamp and 30 bits of data
 Timestamp and allocated namespace ID.

For more information about the hash engine functions and dynamic resource management, refer to the Hash Engine
Functions section in the Axxia Communication Processor Functional Programming Language (FPL) Programming Guide.

Names, Timers, and Hash Table Structure

The hash engine maintains a set of 16 stacks to support namespace ID allocation. A hash call that requests a new
namespace ID (which the hash engine associates with the current hash key) must specify a namespace stack ID from
which the namespace ID is to be allocated. Since each namespace stack can hold up to one million IDs, this permits
you to dynamically allocate and deallocate up to 16 million namespace IDs. Namespace IDs which are on the same
stack have the same entry size, but multiple ASE-defined namespaces with the same entry size can share the same
stack so long as the aggregate total number of entries in the stack is no more than 220. The ASE automatically
manages the allocation of application namespaces to internal hardware tables. For more information on namespace
allocation, refer to the AXX2500 Family of Communication Processors Axxia Software Environment (ASE) Reference
Manual.

When an FPL hash engine call starts a timer, the hash engine creates a timer. This timer expires at the FPL-requested
time. If FPL subsequently issues a hash engine call to update or cancel the associated timer, the hardware simply
updates the associated timestamp stored in the hash entry.

When the timer expires, built-in FPL software first checks the stored timestamp against the current time. If the
timestamp indicates that the timer has not expired (because it was reset one or more times previously), the built-in
FPL software asks the timer manager (TMGR) engine to set a new timer to expire at the new requested expiration time.

If the timer has not been reset and expires, the built-in software calls the hash timer expiration function that the FPL
application registered. While this behavior is transparent to FPL application software, it is visible in the FPL profiler in
the simulator, which records the calls to built-in FPL software when the timer manager expiration tasks arrive at the
MPP. These function calls are also visible when carefully measuring performance on the hardware when many
concurrent timers are run with short time-out intervals.

Physically, the MPP supports up to 1024 hash tables. For optimal performance relative to memory space consumed
each direct mapped table can be provisioned to hold 1.3 to 2.0 times the average expected number of table entries. If
the application requires more than 1024 hash tables, it can include a logical hash table ID as one of the fields it uses to
generate the hash key, thereby supporting millions of logical hash tables.

For more information on the hash engine, see the Hash Engine section.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 43 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 2: Modular Packet Processor (MPP) Engine
Packet Processing

For more information about the hash engine functions and timers, refer to the Hash Engine Functions section in the
Axxia Communication Processor Functional Programming Language (FPL) Programming Guide.

Stateful Processing

The FPL application software uses the MPP state engine to maintain and retrieve information whose lifetime can span
multiple packets. In traditional network transport applications, the state engine can provide such functions as
policing, statistics, and OAM. In more sophisticated applications, the state engine can provide per-session protocol
state information or any other general purpose state maintenance functions. The state engine helps the MPP perform
computations, plus store and retrieve state information in Namespace tables. It also supports reporting statistics and
computation overflow and underflow events for statistical functions, plus reporting special events by setting a
predicate bit in a compute engine script.

The state engine provides the following types of processing functions.

 Built-in – Processed by dedicated hardware. For example, seIncrement64(MYCOUNTER) increments the 64-bit
counter at the namespace ID and offset specified by MYCOUNTER. MYCOUNTER has a 24-bit namespace index
and an 8-bit byte offset.

 Programmable – Runs the selected C-NP script on VLIW compute engine.

For more information on how applications invoke State Engine functions using FPL function calls, use built-in
functions, and invoke C-NP script functions, refer to the Axxia Communication Processor Functional Programming
Language (FPL) Programming Guide.

 For more information on writing state engine C-NP scripts, refer to the Axxia Communication Processor Compute
Engine Programming Guide.

For more information on writing state engine C-NP scripts, refer to the Axxia Communication Processor C-NP Language
Reference Manual.

The state engine functions refer to memory identified by a 24-bit namespace address and an 8-bit byte offset. System
software provisions a memory layout table based on how you configure the MPPStateEngine engine table in the ASE
to specify how to map each entry to system memory. The ASE generates #define statements in the include file for the
configuration to define the 24-bit base ID for each entry used by the state engine. For example, if you define a
GlobalCounters variable then the ASE generates a #define statement for the symbol
NCP_NS_BASEID_GlobalCounters to specify the 24-bit base address of this counter.

Operationally, assuming that the FPL application calls a state engine function with a namespace address plus offset X
(where X is 32 bits), the state engine hardware performs the following actions.

 Uses the upper 24 bits of X to look-up the entry in the memory
 Adds the offset in the lower 8 bits to the resulting memory address
 Aligns the address to W (where W is 8, 16, 32, or 64 bits based on the size of data that the function uses) by

ignoring the low order memory address bits as needed. For example, an seIncrement64 function aligns the data
referenced to 64 bits by ignoring the least significant 3 bits of the resulting address.

The individual function descriptions in the Axxia Communication Processor Functional Programming Language (FPL)
Programming Guide specify the size of data that each built-in function uses when it is not obvious. If a built-in function
returns n bits, then the upper bits not returned are undefined and should not be relied on. FPL functions can reference
zero, one, or two addresses plus offsets. The number and size of the memory regions that each function uses is
specified when the function is written and configured. System software records this information in a script attribute
table that the state engine hardware consults to check memory bounds when processing a script invocation. State
engine function calls which reference one or more namespace address plus offsets are executed in a sequence
defined by the memory address plus offset parameters referenced.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 44 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 2: Modular Packet Processor (MPP) Engine
Packet Processing

The state engine hardware looks at the function number (in the AcpFbiFuncs.h include file) to determine whether
the function being invoked returns a result and whether it is a built-in function or a script function. Bit 7 of the
function number determines whether the MPP should wait for the function result or continue. Bit 6 of the function
number determines whether it is a built-in or a script function. Bits 0-5 determine which function within the group is
being called.

State Engine Built-In Functions

The MPP provides the following types of built-in state engine functions.

 Arithmetic
 Boolean Logic and Bit Search
 Memory Read/Write and Barrier
 Sequence Generation, Checking, and Timestamp

Some of these operations can be done on 1-byte, 2-byte, 4-byte or 8-byte boundaries.

For more information on state engine built-in functions, refer to the Axxia Communication Processor Functional
Programming Language (FPL) Programming Guide.

State Engine Compute Engine

C-NP functions can reference zero, one, or two namespace addresses (24 bits) plus an 8-bit byte offset. A namespace
can reference 16B, 32B or 64B of parameters.

The number and size of the memory regions that each script uses is specified when the script is written and
configured. System software records this information in a script attribute table that the state engine hardware
consults to check memory bounds when processing a script invocation.

For more information on coherency restrictions on the namespace address plus offset parameters provided when
invoking a script, refer to the Axxia Communication Processor Functional Programming Language (FPL) Programming
Guide.

 For more information on how to write state engine C-NP scripts to achieve customized behaviors, refer to the Axxia
Communication Processor Compute Engine Programming Guide and the Axxia Communication Processor C-NP Language
Reference Manual.

Exceptional Event Communication Using a Producer/Consumer Queue

To handle overflows, underflows, and similar exception events the C-NP script detects, the state engine uses a circular
FIFO in system memory, which system software configures at initialization time. Only the host, not the MPP, can read
this FIFO. Built-in arithmetical state engine functions also record overflow and underflow events in this same FIFO.

This 16-byte structure identifies the overflow source (script or built-in function)) and identifies which counters have
overflowed. An ALU operation indicates an arithmetic overflow by writing the following data to the FIFO.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 45 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 2: Modular Packet Processor (MPP) Engine
Packet Processing

Table 3 ALU Operation Arithmetic Overflow Exception Bits

A state engine script reports an overflow event by setting a flag. When it sets this predicate and the script finishes,
hardware generates the event, writes it out to system memory and updates the FIFO producer pointer. This must be
done even when the same script is being invoked back-to-back so that the overflow information is not lost.

 The format of the following 16 bytes is:

 Byte 0 – Function ID of the operation that caused the overflow (supplied by hardware)
 Bytes 1-7 – Seven bytes of data from the script register file from bytes 49:55
 Bytes 8-11 – Index address space and offset for the first parameter block (supplied by hardware)
 Bytes 12-15 – Index address space and offset for the second parameter block (supplied by hardware; 0 if not used)

 For more information on how to direct the state engine hardware to write data to this FIFO to signal an exception to
the software, refer to the Axxia Communication Processor Compute Engine Programming Guide.

For more information on detecting overflow and underflow events in C-NP code, refer to the Axxia Communication
Processor C-NP Language Reference Manual.

Enforcing Ordered Execution

Context Ordering Semantics. The MPP has a number of contexts (threads of execution) and each context processes
a task and runs in parallel with other contexts. Contexts often perform processing steps in an order that is different
than the order in which the contexts started. For example, a context that started processing after another context can
nonetheless finish its processing first. There is no guarantee in preserving order in the execution of contexts, though
the MPP logic guarantees that any tasks launched from a context will be launched from the MPP in the order that the
corresponding context started processing in the MPP.

To maintain arrival order in a context, you must define ordered FPL functions — external functions that are
guaranteed to run for each task in the order the tasks were received on the corresponding input task queue.

NOTE Each ordering queue can only ensure that the first function is ordered for a given context in an ordering queue.
Any subsequent function calls on a previously ordered context, during the life of the context is unordered.

For example, sequence number generation (for example, with seSequenceGen) would normally need to be done
using an ordered function call if sequence numbers are to be generated in task arrival order within a flow. You can
invoke both ordered and unordered versions of the same function.

Byte
Location Description

Bytes[0] 8-bit function ID to decode the size of the register(s) that overflowed

Bytes[1] Bit-0 First overflow/underflow event valid
Bit-1 Overflow or underflow from the first operation
 0: Underflow
 1: Overflow
Bit-2:3 Reserved
Bit-4 Second overflow/underflow event valid
Bit-5: Overflow/underflow from the second operation
 0: Underflow
 1: Overflow
Bit-6:7 Reserved

Bytes[2:7] Reserved

Bytes[8:11] FPL namespace address plus offset associated with the function

Bytes[12:15] Reserved

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 46 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 2: Modular Packet Processor (MPP) Engine
Packet Processing

NOTE Ordering external functions forces sequencing of the data path, which guarantees the order of external function
calls. However, this can result in reduced throughput. Ordering should only be used when it is really necessary for
correct application functionality.

The pattern processor execution logic for external functions provides hardware support for ordering external function
calls issued on the FBI. It tracks incoming tasks and context assignments and ensures that the specified external
functions are invoked in the correct order. External functions that must be ordered are grouped into equivalence
classes. All functions within a class are equivalent when being numbered. When one of the functions in this class is
executed, the function invocation is held up until previously allocated contexts also invoke one of these functions or
they terminate.

The MPP FBI logic uses the following ordering queue sets for ordering specific sets of functions on the specific
ordering queue.

 State engine function ordering queue – Four ordering queues in this set. Use the SETUP SEORDERQUEUE directive
to assign up to 4 state engine functions to each ordering queue in this group.

 Semaphore function ordering queue. There are four semaphore ordering queues, one for each semaphore
request function (so there is no need to explicitly assign semaphore functions to particular order queues).

 General function ordering queue for ordering hash engine, PQM and MPP-PIC functions. This set is made up of
two ordering queues. Use the SETUP GENORDERQUEUE to assign up to four general MPP functions to each order
queue in this group.

For more information on using the SEORDERQUEUE and GENORDERQUEUE directives, refer to the Axxia
Communication Processor Functional Programming Language (FPL) Programming Guide.

Functions defined as ordered and issued on contexts that are not at the head of the ordering queue are queued and
wait their turn, until one of the following conditions is met.

 All contexts started previously have been terminated, or requested to not order any functions.
 The context on the given queue has already called an ordered function
 The FPL application has requested to not order any functions on this context

The ordering logic keeps track of the order in which contexts were started. The functions processed by a specific
ordering queue are sent out in the order the contexts were originally started in. Function calls that do not need to be
ordered bypass the ordering logic. An FPL context that will not be making an ordered function call from that point on
can call fSeUnblockOrderQueues, fNoSem, and fGenUnblockOrderQueues functions (for state engine, semaphore,
and general MPP functions respectively) to release the contexts in the relevant order queues waiting for it.

Atomic Access Using Semaphores. For most FPL applications, you do not have to explicitly account for the
concurrent execution of multiple FPL contexts. However, to explicitly guarantee atomicity across a series of operations
the MPP semaphore subengine helps applications to acquire and release semaphores to lock and unlock access to an
associated resource ID.

Semaphore functions are automatically assigned to their own order queues and are normally ordered, though
unordered versions of them are also defined. You can define up to four groups of semaphores. FPL passes a 10-bit ID
to each semaphore call to identify a particular flow or resource for which the FPL context is requesting exclusive
access. If needed you can use the hash key and index generation capability to compress multiple fields into this 10-bit
flow ID.

Internally, the MPP manages dependency analysis using a 512-entry table which the application partitions between
the semaphore groups in use. If more than one application generated resource ID maps to the same entry in the
512-entry table it causes a false dependency and a context will unnecessarily wait to acquire a semaphore when there
was no actual resource conflict. However, since the chance of this happening is relatively small, the overall impact on
performance should be fairly minor.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 47 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 2: Modular Packet Processor (MPP) Engine
Packet Modification

To efficiently use the semaphore functions, observe the following restrictions.

 A context owning a semaphore in semaphore group N (where N is 0, 1, 2, or 3) can only get semaphores in groups
greater than N. That is, if a context owns a semaphore in group 1, it can still acquire a semaphore in groups 2
and 3, but not 0 or 1. This restriction eliminates a possible circular wait that could cause a deadlock.

 Semaphore calls can be ordered or unordered, as determined by FPL. Only one ordered call to a given semaphore
group can be done during the lifetime of a context. However, a context can acquire an ordered semaphore,
release it, and then reacquire it as an unordered semaphore.

 For better performance, issue semaphore release functions on semaphore-owning contexts and on semaphore
groups where the context owns the semaphore.

 While a context owns an unordered semaphore, it must not issue any MPP PQM function calls.
 While a context owns an unordered semaphore, it must not issue any ordered function calls.

The last two restrictions avoid a deadlock condition when semaphore functions are mixed with other ordered
functions.

Packet Modification

The Prequeue Modifier (PQM) allows you to modify the packet in the MPP, typically before the packet has been
modified or scheduled by other engines. PQM data modification functions build a worklist which is applied to the
packet when it is transmitted. The PQM allows you to perform packet data insertions, deletions, modifications, and
segmentation. If you use the PQM to modify data, the modified data is unavailable to the classification functions until
after the MPP starts the associated task and the modified packet is sent back into the MPP.

MPP Interaction with Engine Sequences

The MPP can be both a start engine and an end engine for any engine sequence. When a packet associated with a task
arrives on an MPP task queue, the MPP automatically invokes the FPL program to classify and process the packet. At
any point in the processing, the MPP can launch commands or a potentially modified portion of the current packet
into a Virtual Pipeline instance. The MPP hardware handles all ordering, coherency, and serialization to guarantee that
all outgoing tasks are sent out in the order that the corresponding incoming task came in. This ordering is guaranteed
even if the processing of a single incoming task generates multiple outgoing tasks. Ordering is guaranteed within an
input task queue (regardless of the incoming or outgoing Virtual Pipeline instance) but is not guaranteed between
input task queues.

An FPL program has an entry point for each engine sequence that is terminated by the MPP. With the ASE, for each
engine sequence that terminates at the MPP, you configure the FPL root function that is called for each incoming
packet to that engine sequence. The ASE generates an FPL header file (.fplh extension) which the FPL program
includes to define these root functions.

Each arriving packet carried in a task can have some number of associated task parameters. These parameters (up to
32 bytes worth with any additional parameters being discarded) are presented to the FPL program as the built-in
variables $iParam0 through $iParam7, where each $iParam variable contains 32 bits of parameter information. For
more information on these variables as well as other variables derived from the incoming task (for example,
$pduLength, $taskHeader), refer to the Axxia Communication Processor Functional Programming Language (FPL)
Programming Guide.

The FPL program launches zero or more tasks as a Virtual Pipeline instance origination point and runs until it calls a
terminating function such as fTransmit. Typically, the MPP launches a single task for every incoming packet. This task
generally consists of the packet (potentially modified using the FPL PQM operations) and associated parameters.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 48 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 2: Modular Packet Processor (MPP) Engine
Packet Modification

These task parameters provide additional information associated with the results of classification needed by
downstream engines. The parameters can originate either directly from the FPL program (from registers or constants)
or indirectly from the FPL program specifying a flow ID which the hardware uses to look up information in the MPP
flow table. However, some applications might decide to split up a single packet into multiple subpackets and
generate an output task for each subpacket. Similarly, some FPL applications might only call the state engine to record
state information about the packet that it processed (perhaps something as simple as incrementing a counter) and
discard the packet without generating a new task.

You can determine which tasks to generate in response to an incoming packet, to decide what pipeline each
generated task should be launched into, and provide any associated parameters that are needed downstream to
process that task.

The ASE provides assistance in launching tasks into engine sequences. The MPP can replay packet processing and thus
launch multiple tasks down the same or different engine sequences with the same packet data. For each engine
sequence into which the MPP originates tasks, you use the ASE to configure the sequence name and the set of output
parameters expected to be supplied. The ASE uses this information to provide an entry for each originating engine
sequence in the header file that it generates. Each of these entries defines an alias for a function named
fVpParms_<pipeline_name>, where <pipeline_name> is the name you give to the engine sequence in the ASE. You
can call this function to identify the outgoing engine sequence and fill in the parameters needed when originating
tasks into that engine sequence. Once this has been done, you can call fTransmit (or a related function) to launch the
task into the engine sequence.

The PQM logic receives any fModifyPDU data function calls followed by one of the output task formation function
calls. The context has to issue at least one fTaskParams function call (which specifies the flow ID) before issuing any
output task formation function call, otherwise the PQM logic discards the packet as part of error processing. The
fTaskParm calls can also be done in stages with each stage providing a portion of the 32 bytes of output task
parameters that the MPP can generate.

Because of the way the PQM generates output tasks, for best performance an FPL context should avoid generating
more than four output tasks for any incoming task. If many copies or pieces of an incoming packet are required, it is
usually more efficient to have the MTM multicast expander generate these copies and have the SED or MPP PQM
remove that portion of the original packet that is not needed for the new packet.

FPL Flow and Tree Instruction Fetch

FPL software uses the PPE flow and tree engines. In general, the flow engine code provides control flow and the tree
engine code performs lookups. The MPP can fetch flow and tree instructions either from on-chip memory (which
serves as a static cache) or from the external pair of DDR3 x9 classification memories if one or both of these optional
memories are populated.

Fetching instructions from the on-chip memory results in the highest performance. This is especially true for flow
instructions. It is recommended that you allocate all frequently used flow instructions to on-chip memory and allocate
infrequently executed code to external classification memory.

The MPP supports 16K on-chip flow instructions per PPE, where two 16K memories can be cross connected together
and shared between a pair of PPEs, to increase memory capacity. For large applications it is best to configure the
memory for highest capacity, sharing between engines, since the performance cost of flow instruction fetch conflicts
between the two engines will likely be small compared to the performance cost of fetching flow instructions from
external classification memory.

While, from a functionality standpoint, although it has some impact on performance, it is helpful to be able to fetch
flow instructions from external tree memory when required, as this supports much larger applications and also
facilitates in-service upgrade processing where the active set of flow instruction software is being changed.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 49 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 2: Modular Packet Processor (MPP) Engine
Exception Handling

The MPP supports 1 MB of on-chip classification memory. You can partition this memory into a maximum of four
replicated copies, each dedicated to one PPE, to reduce potential conflicts among tree engines fetching tree
instructions. For most applications it is best to leave the memory as a single 1MB memory shared by all tree engines. If
more tree instructions are needed than can fit in the on-chip memory, one or both of the x9 DDR3 classification
memories can be populated. Populating both of these memories provides the highest performance.

It is possible to trade off performance and capacity in these memories by varying the degree to which data is
replicated in DDR3 SDRAM banks (where total replication provides the highest performance but the lowest capacity
and vice versa) and the ASE provides three such configuration choices. The algorithm generator software determines
how to map patterns learned at the application level into tree instructions stored in the on and off chip tree
instruction memories in an attempt to maximize performance and minimize on-chip classification memory usage.

Task Debugging

Use the fTransmitDebug and fTransmitDataDebug functions to turn on task debugging. Task debugging is
not specific to the MPP.

Exception Handling

The MPP supports the standard Axxia mechanisms for reporting exceptions. The MPP engine checks for interface and
internal errors and registers these error indications and additional error information in sticky status registers that can
be read and cleared through the configuration interface. System software can configure exception reporting
hardware to determine which error indications generate interrupts.

MPP subengines implement ECC-based single bit correction and single bit and multibit detection for all its large or
persistent data structures and for external classification memory. Smaller data structures are protected via parity error
detection. Any error detected leads to a sticky interrupt status bit being set in the associated module and an interrupt
optionally being generated, based on the configuration of the interrupt reporting hardware.

Many MPP exceptions, such as an incoming task with the task error bit set, will also result in the currently executing
context being sent to the FPL trap handler. The hardware passes an indication of the particular issue that caused the
trap as an argument to the trap handling function. In general, exceptions that are detected while the issuing context is
running will cause traps.

For more information on the trap indications and what each trap means, refer to the Axxia Communication Processor
Functional Programming Language (FPL) Programming Guide.

Specifics as to how selected MPP engines handle exceptions and generate interrupts are discussed in the following
subsections.

State Engine

The state engine checks that the incoming function indexes are valid entries in the MPPStateEngine engine table. An
interrupt is set indicating this condition. For blocking functions (the context is returned when the function completes)
invalid indexes are flagged and the werr flag is set when data is returned to FBI. The FBI converts the werr flag into a
trap code back to the PPE.

The state engines uses a Producer-Consumer Queue (PCQ) model reporting overflow and underflows from built-in
functions and exceptional events signaled by the C-NP script setting predicate bit 9. The hardware supports two
modes for servicing the exceptional event FIFO event queue: interrupt mode and polling mode.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 50 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 2: Modular Packet Processor (MPP) Engine
Exception Handling

In interrupt mode, the state engine reports events to the host processor via a service interrupt. Software will service
the contents of the event queue through appropriate API or NCA function calls. The service interrupt can optionally
be generated based on a configurable number of events written to the event queue or on a configurable time-out
value. Using this option, when an entry is added to the event queue and the configured interval of time has elapsed,
an interrupt is generated.

In polling mode, the host processor will periodically check the state engine write and read pointer information and
process the contents of the event queue as needed. The host processor will update the read pointer value once it has
processed any overflow information.

MPP Packet Integrity Check Engine

In addition to detecting illegal events or illegal function calls, the MPP-PIC engine also detects illegal packet formats
while doing calculations. This detection is based on enforcing packet consistency checks and field value checks as
defined by the applicable networking standards. The result of the operations are reported to the FPL program as
normal function returns, not as a trap to the error handler. In addition, the engine logs any exceptions it detects in
sticky status register configuration bits which can optionally be configured to trigger an interrupt.

Hash Engine

Similar to the PAB and MTM engines that issue timer requests, the MPP Hash Engine checks the number of available
256 byte memory blocks against a configurable threshold when calling the fHashAllocateResource,
fHashAllocateUpdateResource, and fHashCheckTimer functions. This check is needed to prevent issuing a timer start
request if there is insufficient memory available. If there are insufficient 256 byte memory blocks available the
associated hash function will generate an exception and the application software should delete the associated Hash
Table entry (which is in effect corrupted at this point) and take any application-level corrective action is required to
account for the failure to create the requested timer.

There are two different types of Hash Engine exception handling. One type is trap-conditions that can occur as a result
of uncorrectable embedded-memory errors or hash-table structure errors. This type results in an FPL trap. Another
type of exception-handling is dedicated response codes for function-call processing that result in exceptions.

MPP System Monitoring Capabilities

The MPP supports the standard Axxia mechanisms for system monitoring (SMON) functionality. The MPP SMON
functions permit you to monitor a variety of internal conditions, and may be programmed to interrupt if a
programmed threshold is exceeded. Each SMON instance contains two sets of logic and you can program each
independently regarding the condition to monitor, the threshold to compare against, and whether an interrupt
should be generated when the threshold is crossed.

Internally, the SMON control register controls the overall configuration of SMON, including the selection of the
condition to monitor. Use the parameter register to qualify the condition being monitored — for example, an MPP
context number for a per-context type of condition. The counter register shows the current count for the condition
being monitored, and you should zero this count with software before starting. The maximum capture register shows
the maximum value observed for the condition being monitored. The current value register shows the current value
for the condition being monitored. The timer register shows the number of clocks elapsed since starting, and should
typically be zeroed by software before starting. By default the timer counts single core clocks, but may be scaled to
lower frequencies to allow sampling or averaging over longer periods of time.

For more information on operational details about the functions that use the MPP SMON capabilities through the
Axxia RTE software, refer to the Axxia Communication Processor RTE Reference Manual.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 51 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 2: Modular Packet Processor (MPP) Engine
Exception Handling

MPP Task Debugging

The MPP supports the standard Axxia mechanisms for task debugging. Each of the output task forming FPL functions
(fTransmit, fTransmitData, and fTransmitDataRestart) has a corresponding version (fTransmitDebug,
fTransmitDataDebug, and fTransmitDataRestartDebug) that generates an output task with task debugging enabled.
The FPL application can pass up to 24 bits of information to the debugging version of these functions.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 52 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 3: Memory Management Block (MMB) Engine
Overview

Chapter 3: Memory Management Block (MMB) Engine

This chapter describes the Memory Management Block (MMB) engine, its features, and explains how to use it.

Overview

The Memory Management Block (MMB) manages memory data blocks based on requests from client engines. The
MMB allocates the blocks, tracks the number of memory block accesses, and de-allocates the memory block contents
that are not needed.

The data blocks are stored in sections of 256 byte, 2 KB, 16 KB, and 64 KB data blocks. The device stores each memory
section in a dedicated memory pool, where you configure the minimum pool size. The MMB engine communicates
with all accelerator engines whenever a task requires a memory block to store either task or PDU information.

The MMB engine has configurable internal storage for data block addresses. The internal memory is used by the MMB
to store the addresses of available or free data blocks in a stack. The MMB engine contains a local cache and local
buffer of free addresses to optimize the allocation and deallocation of data block addresses. The internal storage
reduces the latency of storing and fetching the addresses in system memory.

The MMB engine manages a reference count for each data block. The reference count indicates the number of times
the data block is accessed prior to being deallocated. The reference count is stored in the first 16 bytes of a data block.
When the reference count is reduced to zero the data block is deallocated.

You configure the number of blocks of each size that are available to the accelerator engines.

The MMB engine issues a NACK when the number of free data blocks falls below a programmed threshold. This is
useful for 2 KB data blocks, which are used for tasks and data. You can set an independent threshold for each. You can
also configure the MMB to have additional data blocks reserved for tasks.

The MMB engine can issue an interrupt when the number of free data blocks fall below a threshold defined by the
ASE. The MMB interrupts are accessed through the configuration ring. The MMB interrupt is cleared through software.

The MMB does not send backpressure based on the availability of blocks; the requesting engines are responsible for
sending the backpressure signals.

Features

The MMB manages data blocks in system memory by performing the following tasks.

 Allocates blocks of main system memory to client engines.
 Keeps reference counts for all allocated blocks.
 De-allocates in-use memory blocks as directed by client engines.
 Provides memory usage statistics for client engines.

NOTE The MMB does not send backpressure based on memory block availability. Client engines must determine when
to send backpressure signals because of low memory resources.

The MMB has a Memory Statistics interface which is a low performance interface that conveys memory usage
statistics to memory clients that need it. For example, the MTM engine can use memory usage decisions to make
packet discard decisions.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 53 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 4: Packet Assembly Block (PAB) Engine
Overview

Chapter 4: Packet Assembly Block (PAB) Engine

This chapter describes the Packet Assembly Block (PAB) engine that performs flexible packet reassembly and editing.

Overview

The Packet Assembly Block (PAB) is an accelerator engine used to flexibly reassemble and transmit multiple
segmented packets. The supported commands determine whether all or part of a reassembled packet needs to be
transmitted, which lets you perform segment-level editing.

The PAB accelerator engine enables reassembly of multiple segments into the same reassembly buffer based on
different requirements. The segment put into the reassembly buffer can be programmed with the required packet size
and the starting position located in the shared buffer. The reassembly buffer holds up to 64 KB.

The PAB engine can simultaneously reassemble up to 224 packets. It uses the cache and memory to hold reassembly
context data during the assembly process. It also uses the cache to store a dynamic, reassembly context packet state
in a table called the Connection Database (CDB).

Features

The PAB engine has the following features.

 Operates as a generalized holding buffer with assembly, transmit, retransmit, and delete capabilities for incoming
data streams.
— Supports inserting or extracting data from anywhere in the same single assembly buffer.
— Supports gaps in the same single buffer.
— Specifies to the bit level to support protocols such as the Medium Access Control-hs (MAC-hs).

 Supports the following traditional reassembly functions.
— IP defragmentation
— AAL5
— AAL2
— SSSAR

 Supports the following generalized holding buffer and sliding window protocols for the transmit and retransmit
buffer functionality.
— TCP origination and termination
— MAC-d protocol

 Buffers and schedules packet data based on events, rather than rates or weights, especially when sending varying
amounts of data.

 Supports millions of reassembly contexts and simultaneous reassemblies.
 Reassembles packet segments.
 Transmits either partial or complete segments.
 Edits segments to different locations in the reassembly buffer.
 Supports timer expiring and maximum reassembly size exceeded in order to end a reassembly context.
 Checks sequence numbers for internal integrity checking.
 Checks the status of a reassembly context.
 Monitors reassembly context resource usage.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 54 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 4: Packet Assembly Block (PAB) Engine
PAB Functions

PAB Functions

The PAB engine is programmable using commands sent using a task. Each task includes a single command, defined by
a set of common parameters. These parameters can have different meanings for different commands.

Each command is used to achieve one or more of these functions:

 Identifying the range of segment data that should be included in the reassembled packet.
 Defining the placement of the segment in the reassembled packet.
 Defining the range of data of the reassembled packet to be transmitted.
 Transmitting the reassembled packet.
 Discarding the data from the reassembly context.
 Checking and returning the status of a reassembly context.
 Editing at bit-level.
 Time out Reassembly.
 Checking the sequence number.

Identifying the Segment Data for Reassembly

Each time you add a segment to a reassembly context, you can enqueue all of the packet data, or you can define a
range of the packet data that you want to be added. To do this, you define parameters for the Enqueue command that
edit the segment for reassembly by defining an offset at the beginning, used to define data to be removed from the
start of the packet data, and a length, which can be used to remove data at the end of the packet.

The offset parameters, definable separately for the initial segment of the reassembly context, define a starting point
for the segment within the packet data, measured from the start of the packet.

The length parameter defines the size of the segment data, starting from the beginning of the packet, or, if a starting
offset is used, from the starting offset. A value of zero for the length parameter enqueues all of the packet data from
the starting offset.

Because of the flexibility of the Axxia architecture, you can choose to edit the packet data using a different accelerator
engine than the PAB. For example, you could use the MPP fModifyPdu function to edit the packet before sending it
to the PAB. Similarly, you could send the packet to the SED for modification before sending it to the PAB.

Defining the Segment Placement in the Reassembly Context

When you add a segment to a reassembly context, you define the starting point for the segment in the reassembly
context, called the write offset. The write offset is measured from the start of the reassembly context.

Segments can be added in any order. You can, for example, add a segment that creates a gap by adding the third
segment to the reassembly context before the second segment arrives. Or, you can add a segment that overlaps
another segment and overwrites the existing data in the reassembly context, as an additional way to edit packet data.

A special case arises when you plan to transmit data more than once from a reassembly context. Once you have
transmitted data from a reassembly context, you cannot enqueue a segment that overwrites that reassembly
context’s transmitted data range or any data that precedes that data. This restriction is to prevent the same packet
data from being referenced by two or more different tasks, which could cause packet data to be unintentionally
overwritten.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 55 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 4: Packet Assembly Block (PAB) Engine
PAB Functions

To keep track of the start of writeable reassembly context memory space, the connection database uses a variable
called the Minimum Enqueue Offset. This variable points to the first available byte that can be written to in the
reassembly. Any enqueue offset you use must be equal to or greater than the Minimum Enqueue Offset. The
Minimum Enqueue Offset is initialized to zero when a new reassembly context is created, and updated when packet
data is transmitted.

Defining the Reassembled Packet Data to be Transmitted

When your reassembly is complete, you can transmit it as a packet to the next engine in the engine sequence. When
you transmit the packet, similar to enqueuing segments, you can define a start offset and a length to select the data in
the reassembly that you want to transmit.

For convenience and optimal performance, the PAB has a command that enqueues the last segment of a reassembly
and transmits the reassembled packet. In this case, the start offset and length refer to the segment, not the
reassembly, so the last segment data is added to the end of the reassembly. When you need to transmit less than the
entire reassembly, use a separate enqueue and transmit commands.

The PAB does not keep track of the sizes for individual fragments in the reassembly, only the largest reassembly packet
size. If the transmitted part of the reassembly contains gaps where no data has been written, the content of the gaps
is undefined.

Transmitting the Reassembled Packet

The PAB supports two types of transmit commands:

 The Transmit command sends the reassembled packet and prevents any additional editing of the original packet
data that has been transmitted, sending the new packet and its task to the next engine in the engine sequence.

 The Transmit Copy command creates a new packet by copying the reassembled packet to another memory
location, creates a new task that references the new copied packet, and transmits the new task to the next engine
in the engine sequence. This command does not affect the original reassembly context data, that is still available
for editing and transmission. This is useful for applications that need to send multiple versions of a packet that
vary slightly in content.

Using combination commands, such as an Enqueue and Transmit, reduces the number of tasks you have to send to
the PAB.

Discarding the Reassembly Context

Each active reassembly context takes up memory space in the Namespace table created to hold the PAB connection
database. The Namespace needs to release an entry’s reassembly context data (deallocate memory) for one of the
following reasons.

 The reassembly is complete and the Axxia device transmitted the reassembled packet.
 An error in the reassembly happened and the reassembled packet should be discarded.
 The reassembly context either timed out or exceeded the maximum size defined, called a sizeout.

You can delete a reassembly context or a subset of reassembly data using the discard command. The discard
command can delete all or part of the reassembly data. It starts from the beginning of the reassembly and deletes the
number of bytes defined in the length parameter; a value of zero deletes the entire reassembly.

For a time out or sizeout, you can select a flag for either that automatically discards the current segments in the
reassembly context when the time out or sizeout condition is met. If another segment is then sent to the reassembly
context, it is treated as if it is the initial segment sent to that existing reassembly context. If the flag is not set in either
case, the time-out or sizeout event causes the PAB to send the packet to the next engine in the engine sequence.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 56 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 4: Packet Assembly Block (PAB) Engine
Using the PAB

Timers can be set to start or restart with each new segment enqueued, or only on the initial segment. You can use any
enqueuing command to override and stop the timer for the reassembly context. Timers are reset whenever a
reassembly context is terminated.

For cases where the state of the reassembly is unknown, you can use the Cleanup command to reinitialize the
reassembly.

Checking Reassembly Context Status

The Check Status commands sends a task that does not affect the reassembly context data, and force the PAB to
generate an output task with the state information for the reassembly context that you requested. This feature is most
useful for debugging during development.

Using the PAB

The PAB creates, adds to, transmits, and deletes packet reassemblies through commands sent in tasks to the PAB from
another engine, typically the MPP or the CPU. You can perform the following tasks with the PAB commands.

 Create a reassembly context.
 Add packet segments to the reassembly context.
 Check the status of a reassembly context.
 Transmit all or part of the reassembled packet from the reassembly context.
 Delete the reassembly context.

The PAB supports 14 base commands, and a set of options for those commands in the form of parameters. A task sent
to the PAB includes a command and parameter options that define the action for the PAB to take for a given
reassembly and, if included, packet segment.

The input tasks sent to the PAB result in adding or deleting data to the reassembly, clearing the reassembly,
transmitting all or part of the reassembly data in an output task, or generating an output task with status information.

Creating a Reassembly Context

Before you can create a reassembly context in the PAB, you must define a Namespace for the PAB and add a PAB
Reassembly table. Each entry in the table tracks a reassembly context, so the number of entries you define should be
equal to the maximum number of simultaneous reassemblies that you plan to support.

The entry size can be one of two sizes: 128 bytes or 256 bytes. If you use timers, for timing out reassemblies, you need
to choose 256-byte entries, otherwise use 128-byte entries.

The engine that sends commands to the PAB must keep track of the reassembly table entries: adding and deleting
entries, and keeping track of the traffic flows that use the reassemblies. In the MPP, the Hash Engine offers a set of
functions for managing tables that you can use to efficiently manage the PAB table. By maintaining a hash table in the
MPP that mirrors the PAB entries, you can track status and add and delete entries as they are created or deleted in the
PAB table.

You create a PAB reassembly context by using one of the following Enqueue commands to add a segment.

 Enqueue – Adds a segment to a reassembly context.
 Enqueue with Transmit – Adds a segment to a reassembly context, then transmits all of the reassembled packet

to the next engine in the engine sequence.
 Enqueue with Transmit Copy – Adds a segment to a reassembly context, duplicates the packet data in memory,

then transmits all of the duplicated reassembled packet to the next engine in the engine sequence.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 57 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 4: Packet Assembly Block (PAB) Engine
Using the PAB

NOTE Transmit Copy differs from a Transmit, because it creates a new copy of the packet data in memory that the
output task points to, instead of pointing to the original packet data as a Transmit command does. The packet data
sent with a Transmit Copy command can be modified without affecting the original packet data. Similarly,
modifying the original data does not affect the copy created by the Transmit Copy command

 Enqueue, Transmit, and Discard – Adds a segment to a reassembly context, transmits all of the reassembled
packet to the next engine in the engine sequence, then deletes the reassembly context.

To start a new reassembly context, the enqueue command must be assigned a reassembly index, a pointer into the
reassembly table, that represents an entry not currently being used for another reassembly. The segment does not
have to be the first segment of the packet being reassembled; a new reassembly can be created by enqueuing any
segment of the packet.

Adding Segments to Reassembly Contexts

The PAB enqueue commands can also add segments to existing reassembly contexts. You can control the placement
of each segment in the reassembly context space, overlapping segments or leaving gaps, so that in addition to strictly
reassembling segments, you can perform byte-level and bit-level segment editing.

You can also define two different byte offsets: an offset to be deleted from the start of the initial segment, and an
offset to be deleted from all other segments.

Transmitting All or Part of a Reassembled Packet

While the Enqueue Transmit combination commands send all of the reassembled packet data, the PAB also offers
Transmit commands that allow you to select any part of the reassembly context data to send out with the output task.

The PAB engine Transmit commands include:

 Transmit – Transmits all or part of the reassembled packet, with pointers in the output task that point to the
original packet data. The Transmit command restricts the transmitted data, and any other data preceding the
transmitted data in the context, from being edited further by the PAB.

 Transmit Copy – Duplicates the packet data in memory to create a new packet, then transmits all or part of the
reassembled packet, pointing to the new packet duplicated data in the output task.

 Transmit Discard – Transmits all or part of the reassembled packet, then deletes the reassembly context.

Another option to optimize command use for transmitting is to manually reset the sizeout value to less than the
reassembled packet size when you enqueue a segment, triggering a sizeout and forcing a transmit.

Clearing a Reassembly Context

When you have completed a reassembly context, you need to clear the reassembly table entry, to free memory and to
make the reassembly index available for a new reassembly.

Using the Enqueue and Transmit commands that include Discard — such as Enqueue, Transmit and Discard or
Transmit and Discard — deletes the reassembly context. Or, you can delete a reassembly context using the Discard
command, set to discard all.

In cases where the status of a reassembly context is unclear, you can re-initialize a reassembly context using the
Cleanup command.

In addition, the PAB Discard command allows you to delete a number of bytes you specify from the start of the
reassembly context, up to the entire reassembly. Use the Sticky Discard command to delete all the current data and
any additional data that is received by the reassembly context until the reassembly context is cleared by a Transmit
with Discard, Discard, or Cleanup command.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 58 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 4: Packet Assembly Block (PAB) Engine
Using the PAB

Monitoring Reassembly Context Status

The PAB engine has the following commands that can check the status of the reassembly context database.

 Get Status Reassembly State – Returns the status for the given reassembly context, using the standard output
task status parameters plus the current sequence number, a timer ID, and a timestamp.

 Get Status Reassembly Priority Memory – Returns the memory usage for the reassembly context’s priority, and
the total memory usage for all priorities, both in 265-byte units.

 Get Status Priority Memory – Returns the memory usage for reassemblies with the indicated priority, and the
total memory usage for all priorities, both in 256-byte units. The command requires that the task use the
reassembly context ID field to indicate a priority.

Each of these commands generates an output task from the PAB, without affecting the state of the PAB reassembly
contexts.

Bypassing the PAB

When the PAB is part of an engine sequence, you may need to send both packets that require reassembly and packets
that do not require reassembly through the pipeline. The Passthrough command permits you to send a packet task to
the PAB without initiating a reassembly context. Instead, the PAB simply passes the packet with the input parameter
packet pointers through to the next engine in the pipeline. This can be useful for maintaining packet order.

Using Bit-level Operations

The PAB supports bit-level editing of packet segment data through the use of the BitFields parameter.

The PAB engine supports the following bit-oriented operations.

 Inserting a bit stream into an existing assembly at an arbitrary starting bit position relative to the beginning of the
assembly.

 Transmitting a bit stream from an assembly using an arbitrary starting bit position.
 Advancing an assembly head pointer and its length status to delete data from the front of the assembly

Using Timers with the PAB

You can use timers with the PAB engine to time reassemblies for time-out error cases or to trigger the transmission of
packets for time-sensitive applications. Timers are associated with reassembly indexes.

 The PAB uses the Timer Manager services to maintain timers. It has a current time counter that synchronizes with the
global clock and maintains the order of timer requests and events.

You can start a timer for a reassembly context by providing a value for the TimerValue parameter in the input task and
selecting a TimerControl action in the Advanced Flags field: no action, stop, start unconditionally or start on first
reference to an inactive reassembly context.

If multiple timers are started for a reassembly context, only the most recent value is stored in the reassembly CDB.

NOTE If you use timers for any other function other than cleanup, it may be difficult for the engine sending commands
to the PAB, such as the MPP or CPU, to know the latest status of the reassembly context.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 59 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 4: Packet Assembly Block (PAB) Engine
PAB Configuration Overview

Using Sequence Numbers

You can use sequence numbers to ensure that the tasks sent to the PAB are not dropped by the system by having the
PAB verify the sequence number of each segment that it receives for the reassembly. You do this by enabling
sequence number checking and supplying a sequence number for each task you send to the PAB.

If the SeqCheckEnable parameter is set to one, the PABengine checks that the SeqNumber parameter supplied by this
command is equal to the previous sequence number stored in the CDB plus 1 mod 256, provided that the CDB
location indicates that the previous command for the reassembly had sequence checking enabled.

Note that the sequence number continues when a new reassembly context is created with this ID; this allows the
feature to cover the initial Enqueue to a reassembly context. If the check fails, the PAB action marks the reassembly
context with an error, frees up any memory allocated to this reassembly context, drops all future enqueues to this
reassembly context, and optionally sends a task if ExceptionNotify is 1. When output tasks are sent normally, such as
by a Transmit, the Exception Notify bit does not matter.

The PAB engine writes the SeqNumber and SeqCheckEnable parameter values to the CDB for every command except
for the GetStatus and PassThrough commands. When a particular reassembly index is reused for a new reassembly
context, by default, the previous sequence numbering is used for that reassembly index.

You can modify the sequence checking behavior by setting another parameter, the BlockSequenceCheck parameter.
By setting this bit, you can turn off sequence error checking for this command, and, if used with the SeqCheckEnable
bit set, reset a reassembly context sequence check to start a new count for the reassembly context in the CDB.

NOTE GetStatus and PassThrough commands do not update the reassembly CDB sequence checking state or allow
sequence checking. time-outs do not affect the sequence check state of the reassembly context.

PAB Configuration Overview

Configuring the PAB engine in the Axxia Software Environment (ASE) requires you to define the following elements.

 Priority and global buffer management thresholds.
 Task Receive queue buffer management policies. The PAB engine supports both high-priority and low-priority

task queues.
 A Namespace table for the connection database (CDB).

Additional initialization options using the RTE include enabling input task debugging with the mode register. This
specifies whether or not debug data is supported for input tasks.

PAB Task Receive Queue Configuration

PAB has two task receive queues, the high and low priority task receive queues. Tasks are transmitted to the PAB with a
3-bit task-priority value. The PAB maintains a table that you can configure in the ASE that maps the received task
priority to a PAB task receive queue.

You can set the arbitration between the high and low priority task receive queues as strict priority, simple round robin,
or weighted round robin.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 60 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 4: Packet Assembly Block (PAB) Engine
PAB Task Input Parameters

PAB Task Input Parameters

The following table shows the PAB task input parameters.

Table 4 PAB Parameter Encoding

Field Size Description

Operator 1B Defines the PAB command, with 3 sticky bits.

ReassemblyIndex 3B Reassembly ID
Default is 0xFFFFFF.

Length 2B Length information in unit of bytes. With the Enqueue command, the length value of 0 means
enqueue all data from the input packet from the Start/First Offset to the end. Likewise, with the
Transmit command, the length of 0 means transmit all data from the WriteOffset to the end in the
reassembly.
Default is 0x0000.

StartOffset 1B Number of bytes to remove from the segment to be reassembled. For the initial segment to arrive
in the reassembly context, use the FirstOffset instead of the StartOffset.
Default is 0.

FirstOffset 1B Number of bytes to remove from the initial segment to arrive in the reassembly context.
Default is 0.

SizeoutThreshold 2B Maximum size of reassembly in bytes. Value of 0xFFFF indicates that there is no limit in reassembly
size.
Default is 0xFFFF.

WriteOffset 2B Use the following information for both Enqueue and Transmit commands
 When the Enqueue command is used, the WriteOffset indicates the byte location in which this

segment is to be placed for reassembly. The value of 0xFFFF means append at the end of
current reassembly for the Enqueue command.

 When the Transmit command is used, the WriteOffset indicates the beginning byte location to
be transmitted from the reassembly. For the Transmit command, value of 0xFFFF means
transmit from the beginning of the reassembly.

 For combined Enqueue and Transmit commands, the WriteOffset is used for enqueueing,
indicating the byte location in which the segment is to placed, and the entire reassembly is
transmitted.

Default is 0xFFFF.

TimerValue 3B Time delta for the timer. A value of 0 indicates no timer.
Default is 0x000000

AdvancedFlags 1B Bit Field

7 ExceptionNotify

6 BMIgnore

5 DiscardOnTimeout

4 DiscardOnSizeout

3:2 TimerControl

 00 – No timer is used

 01 – Stop

 10 – Start unconditionally

11 – Start timer if the task references an inactive reassembly

1 SeqCheckEnable

0 BlockSequenceCheck

Default is 0

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 61 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 4: Packet Assembly Block (PAB) Engine
PAB Task Output Parameters

PAB Task Output Parameters

The PAB output task sends 12 bytes of output status parameter information and the reassembled packet data, if
included, to the next engine in the pipeline.

PAB Task Output Parameters without the GetStatus command

The PAB task output parameters contain the following elements.

 Status byte – Contains the reassembly's sticky bits (from the CDB, and updated by the current task), and status
bits indicating if the task experienced an exception or referenced a reassembly which had previously experienced
an exception.

 Three-byte reassembly index value.
 Four bytes of CDB current state – Used for the reassembly (as updated by executing the current task). Note that if

the CDB Active bit is 0, the remaining fields are undefined. If the CDB is in the exception state, that is, the first
status byte Exception Code is a non-zero value, the priority field is undefined.

Table 5 PAB Output Parameter Format (without the GetStatus command)

Table 6 Status Byte Encoding

BitFields 1B Bit Field

7:5 LengthBitOffset

4:2 DestBitOffset

1:0 Reserved

Default is 0.

SeqNumber 1B Segment Sequence number. Default value of 0

Field Size Description

Status 1B Status byte. See definitions in the Status Byte Encoding table.

Reassembly ID 3B Reassembly index specified by the input task PAB parameters.

CDB State 4B CDB State as defined in the CDB State Encoding table.

Bits Field

7:5 Sticky bits

4 Prior Exception.
0 – Exception status (if any) is due to an exception encountered by this task
1 – Exception status (if any) is due to a prior exception which was recorded in the CDB for this reassembly.

3:0 Exception code.
Codes are explained in the PAB Expected Exception Priority and Encoding table.

Field Size Description

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 62 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 4: Packet Assembly Block (PAB) Engine
PAB Task Output Parameters

Table 7 PAB Expected Exception Priority and Encoding

When the PAB reports an exception, only one exception is reported. If more than one exception occurs, PAB reports
the highest priority exception.The Timer Start Failure, code 11, is the highest priority exception reported, followed by
exceptions 1-10 in that order.

Table 8 CDB State Encoding

Encoding Exception Definition Meaning

0 No exception The reassembly and the reassembly packet is a good packet.

1 Head Drop Low priority input task queue reached its discard threshold.

2 Task Error PAB received a task with the error bit is set. The PAB drops received tasks with the task
error bit set.

3 Buffer Management Input task receive queue reached its buffer management threshold.

4 Sticky Discard PAB received a sticky discard command for this reassembly ID.

5 Sequence Check Error PAB detected a sequence error for this reassembly ID.

6 Reassembly Corrupted This is a special condition when an enqueue occurs with the write offset less than the
minimumEnqueueOffset.
Special precautions are required when a partial reassembly is transmitted with data left in
the reassembly. For example, if there are 128 bytes in a reassembly and a Transmit
command is called with the length information of 100 bytes, the minimumEnqueueOffset
value for the next enqueue command is 100. Any attempt to write to a byte location less
than 100 is prevented and sets this bit.
The following conditions also set the reassembly corrupted bit.
 Enqueue or Transmit with {Length, LengthBitOffset} parameters AND
 {WriteOffset, DestBitOffset} parameters greater than or equal to ((64K-1) * 8)
 If any of the parameters have specially interpreted default values, the interpreted value is
used. This means if Length and LengthBitOffset are 0, the PAB uses the current reassembly
length as the {Length, LengthBitOffset } value.

8 Enqueue and Memory
Allocation Error

The system is out of memory.

9 Timeout A particular reassembly timed out.

10 Sizeout A particular reassembly exceeded its maximum size.

11 Timer Start Failure A PAB request sent to the timer engine failed.

NOTE Timer Start Failure has a higher priority than exceptions encoded 1 through 10

12-15 Reserved –

Bit(s) Field

31 Active

30:27 Spare

26:24 Priority

23 Spare

22 Sequence Check Enable

21 Discard On Timeout

20 Timer Stopped

19 Spare

18:16 Bit Length

15:0 Length (bytes). This represents the highest enqueued byte.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 63 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 4: Packet Assembly Block (PAB) Engine
PAB Task Output Parameters

PAB Task Output Parameters with the GetStatus command

If a task is transmitted because of an explicit GetStatus command, the PAB outputs a task with no packet data, but with
PAB output parameters in specific formats, depending on which of the three commands you use.

The following tables show the individual formats of the GetStatus output for each command.

Table 9 GetStatus Format – Select 0 (Default, GetStatus_reasmState)

Table 10 GetStatus Format – Select 1 (Memory Usage, GetStatus_reasmPrioMem)

Table 11 GetStatus Format – Select 2 (Memory Usage GetStatus_prioMem)

Field Size Description

Status 1B Status byte. See definitions in the Status Byte Encoding table.

Reassembly Index 3B Reassembly index specified by the task

CDB State 4B Same format as in the CDB State Encoding table.

Sequence Number 1B CDB state for this reassembly

Reserved 1 bit –

Timer Generation Field 3 bits CDB state for this reassembly

Reserved 2 bits –

Timestamp 18 bits CDB state for this reassembly

Reserved 4B –

Field Size Description

Status 1B Status byte. See definitions in the Status Byte Encoding table.

Reassembly Index 3B Reassembly index specified by the task

Spare 3 Bits –

Priority Memory Usage 29 Bits PAB memory usage (in 256-byte units) for the priority of the
indicated reassembly

Spare 3 bits –

Total Memory Usage 29 bits PAB memory usage (in 256-byte units) total for all priorities

Reserved 4B –

Field Size Description

Spare 35 bits This format does not refer to a reassembly or CDB location.
There is no reassembly/CDB-specific state to report.

Priority Memory Usage 29 bits PAB memory usage (in 256-byte units) for the priority
specified by the PAB input task parameter

Spare 3 bits –

Total Memory Usage 29 bits PAB memory usage (in 256-byte units) total for all priorities

Reserved 4B –

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 64 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 4: Packet Assembly Block (PAB) Engine
PAB Commands

PAB Commands

PAB commands are passed to the PAB as part of the input task parameter. The first 8 bits of the PAB input task
parameter are the operator, and the 5 Most Significant Bits of the operator are called the command. The remaining
three bits are sticky bits used for inter-engine communication.

The command field specifies the PAB engine instruction. There are only 14 valid instructions which can be passed
through the command field. Do not pass any other pattern other than these valid 14 instructions. The following table
shows the instruction name, its binary codes, and a synopsis of its functionality.

Table 12 PAB Commands

NOTE The behavior for all command encodings not described here is undefined.

PAB commands have parameters that may have different meaning depending on the command. The following table
lists the parameters, their default values, and their sizes.

Binary Pattern Command Function

00000 GetStatus_reasmState Returns PAB status to the client.

00001 GetStatus_reasmPrioMem Returns PAB status to the client.

00010 GetStatus_prioMem Returns PAB status to the client.

00100 Discard Discards data from the indicated reassembly, starting at the beginning of the
reassembly, for the specified length. If all of the data is discarded, then the
reassembly is deleted.

00101 Cleanup Discards all reassembly data, initialize CDB state. Used only when the state of the
assembly is unknown, and you want to clear it.

01000 Transmit Transmits from the specified offset for the specified length, retains reassembly
packet data, and sends pointers to the original reassembly packet data in the
output task.

01010 TransmitCopy Same as Transmit command, but duplicates the reassembly packet data in
memory, and send the pointers to the duplicate data in the output task.

01100 Transmit with Discard Same as Transmit command, sends original reassembly pointers in output task,
but discards reassembly packet data starting from the beginning of the
reassembly, up through the last byte transmitted.

10000 Enqueue Enqueues input data to reassembly, at the specified offset, for the specified
length.

10100 Sticky Discard Marks the assembly as dirty, freeing all memory and causing all subsequent
enqueued data to be dropped until there is a full Transmit with Discard,
Enqueue Transmit with Discard, standalone Discard, or Cleanup command.

11000 Enqueue with Transmit Same as Enqueue command, followed by Transmit command, sends original
reassembly pointers (updated by Enqueue) in output task.

11010 Enqueue with Transmit
Copy

Same as Enqueue with Transmit command, but duplicates packet data in
memory and sends the pointers to the duplicate data in the output task

11100 Enqueue with Transmit with
Discard

Same as Enqueue with Transmit command, then transmits the entire reassembly
and discards source data

11101 Passthrough Passes input data and pointers to output

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 65 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 4: Packet Assembly Block (PAB) Engine
PAB Commands

Table 13 PAB Command Parameters

 Parameters whose meaning is dependent on the PAB command.
 Parameters whose meaning is independent of the PAB command.

Independent PAB Command Parameters

The following sections discuss the command parameters that do not depend on the PAB command. The parameters
that do depend upon the PAB command are described as part of the behavior of the specific command.

ReassemblyIndex

This parameter is the 24-bit reassembly ID to which the segment is to be reassembled. The value of the reassembly ID
should be within the list of the configured reassembly IDs.

For more information about configuring reassembly IDs, refer to the AXX2500 Family of Communication Processors
Axxia Software Environment (ASE) Reference Manual. The default value of 0xFFFFFF does not have any special meaning;
it is interpreted as the reassembly ID 16777215.

SizeoutThreshold

This parameter specifies the maximum number of bytes for a reassembly and is also the highest byte number location
allowed on a particular reassembly. If a reassembly segment Enqueue command attempts to write to an address
higher than the SizeoutThreshold, the reassembly terminates and the data is discarded from the reassembly. This
means the next segment enqueued with the same reassembly ID starts a new reassembly. The default value of 0xFFFF
indicates that no SizeoutThreshold is specified.

The reassembly packet data may be transmitted depending on the information specified in DiscardOnSizeout
parameter.

Parameter Name Size Default Value

ReassemblyIndex 3 Byte 0xFFFFFF

Length 2 Byte 0

StartOffset 1 Byte 0

FirstOffset 1 Byte None

SizeoutThreshold 2 Byte 0xFFFF

WriteOffset 2 Byte 0xFFFF

TimerValue 3 Byte 0

AdvancedFlags bit 7 - ExeptionNotify 1 Bit 0

AdvancedFlags bit 6 - BMIgnore 1 Bit 0

AdvancedFlags bit 5 - DiscardOnTimeout 1 Bit 0

AdvancedFlags bit 4 - DiscardOnSizeout 1 Bit 0

AdvancedFlags bit 3:2 - TimerControl 2 Bits 0

AdvancedFlags bit 1 - SeqCheckEnable 1 Bit 0

AdvancedFlags bit 0 - BlockSequenceCheck 1 Bit 0

BitFields bit 7:5 - LengthBitOffset 3 Bits 0

BitFields bit 4:2 - DestBitOffset 3 Bits 0

BitFields bit 1:0 - Reserved 3 Bits 0

SeqNumber 1 Byte 0

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 66 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 4: Packet Assembly Block (PAB) Engine
PAB Commands

TimerValue

 This parameter provides timer information. The 24 bits of time information are calculated as follows:

 Bit 23 sets the unit. When it is 1, the unit is seconds; otherwise it is microseconds.
 Bits 22:16 are a left shift operand. This is a signed value and a negative value means right shifting. If the time unit

is seconds, the valid left shifting value must be less than or equal to 10. A left shifting value greater than 10 refers
to the maximum delay the timer engine can provide.

 Bits 15:0 are the actual timer value.

 The Axxia architecture defines a 32-bit timer delta. However, the PAB only uses a 24-bit parameter. These 24 bits are
used as the 24 MSBs of the 32-bit timer delta; it is assumed the eight LSBs are all zero. For example, a PAB input
parameter of 0x810001 is interpreted as a timer delta of 0x81000100, which translates to 512 seconds.

The default value of 0 indicates that no timer is used.

ExceptionNotify

The PAB engine can receive the following command types from another engine.

 Commands that direct the PAB engine to create an output task
 Commands that trigger a PAB action, but do not create an output task.

The ExceptionNotify parameter permits the PAB engine to generate an output task upon an exception during
processing which otherwise does not generate an output task.

The default value of 0 indicates that no output task is generated when an exception event is detected on a particular
reassembly. Otherwise, a task is generated when an exception occurs.

NOTE The ExceptionNotify parameter does not control the generation of the output task due to a time out or a
reassembly size limit. An example of exception event is an event caused by the buffer management. You should only
set this bit to 1 if the engine sequence terminates with an engine which can properly interpret the exception event,
that is, the MPP or CPU.

BMIgnore

This parameter controls buffer management checking. The default value of 0 indicates buffer management checking
is performed for the incoming task. When set to 1, the buffer management checking is not performed for the
incoming task.

DiscardOnTimeout

 If this bit is set to 1, when a time out occurs in the middle of the reassembly the PAB does not generate a task to the
next engine. When a time out occurs, all of the existing segments are removed from the reassembly, therefore the
next segment is treated as the initial segment for the reassembly. The default is 0, which causes the PAB to generate a
task when a reassembly times out that sends the time out packet to the next engine.

DiscardOnSizeout

The default value of 0 causes the PAB to generate a task when the number of bytes in a reassembly exceeds the
SizeoutThreshold value. The PAB also sends the oversize packet to the next engine. However if 1, the PAB engine does
not generate a task for the next engine.

NOTE When a time out or oversized assembly is detected, all of the segments are removed from the reassembly.
Therefore, the next segment is treated as the initial segment for the reassembly.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 67 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 4: Packet Assembly Block (PAB) Engine
PAB Commands

TimerControl

Use the 2-bit TimerControl parameter with the timer value to do the following actions.

 Enable or disable the timer.
 Start the timer based on the initial segment or any designated segment (every, current, last, etc.) to arrive in the

reassembly.

The following table describes the various TimerControl settings.

Table 14 TimerControl

When a reassembly is terminated either by a command, such as Discard, or an exception, such as oversize PDU, the
PAB automatically resets the timer. For example, the PAB may start a reassembly and the timer. If the oversize
exception occurs because the size of the reassembly exceeds the sizeoutThreshold, the PAB resets the reassembly. In
this case, the PAB does not generate an additional output task due to the reassembly time out.

The following two examples illustrate using the TimerControl parameter.

Example 1: In this example, the time-out value is based on the arrival of the initial segment into the reassembly. There
are three Enqueues with TimerControl 11 and DiscardOnTimeout = 0, which cause the reassembly to be transmitted
when the timer (started by the first enqueue) expires.

1. Segment 1: Enqueue with TimerControl: 11

2. Segment 2: Enqueue with TimerControl: 11

3. Segment 3: Enqueue with TimerControl: 11

Example 2: In this example, the time-out value is based on the arrival of the last segment onto the reassembly.
Assuming there are three segments for the reassembly and on the last segment there is a Transmit with Discard
command.

1. Segment 1: Enqueue with TimerControl: 10

2. Segment 2: Enqueue with TimerControl: 10

3. Segment 3: Transmit with Discard with TimerControl: 01

NOTE Since the reassembly is terminated with Discard command, setting TimerControl to 01 is not mandatory.

SeqCheckEnable

Both the SeqCheckEnable and the BlockSequenceCheck control sequence number checking in the PAB. Complete
details on how these two parameters work together to control sequencing checking are in the BlockSequenceCheck
section. The default value is 0.

TimerControl Value Action

00 No operation. (Default)

01 Stop Timer
The PAB does not time out the reassembly even though the timer value is
expired.

10 Start Timer unconditionally when the new segment arrives.
The PAB starts the timer with the time out value specified in the TimerValue
parameter. Therefore, you can specify a new timer value any time these
control bits are 10.

11 Start Timer for the initial segment of the reassembly.
Use when the time-out needs to start on the arrival of the initial segment in
the reassembly, rather than any segment.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 68 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 4: Packet Assembly Block (PAB) Engine
PAB Commands

BlockSequenceCheck

The combination of the BlockSequenceCheck and SeqCheckEnable parameters, plus the current state of the
reassembly controls sequence checking in the PAB. The sequence number update only occurs when the state of the
CDB shows that the previous segment had sequence checking enabled.

You can use the combination of the BlockSequenceCheck and SeqCheckEnable to setup a sequence number check for
a particular reassembly ID. The following table shows how the combined settings of BlockSequenceCheck and
SeqCheckEnable control PAB sequence checking.

Table 15 Sequence Check Control

To initialize the reassembly sequence number, you must enable the BlockSequenceCheck using the SeqCheckEnable
and BlockSequenceCheck combination 01 or 11. To run the sequence check for the incoming segment, use the
combination 10.

SeqNumber

 The PAB checks the value of parameter depending on the values of the BlockSequenceCHeck and SeqCheckEnable
parameters, and the state of the reassembly, if the previous command had sequence number checking enabled. The
default value is 0.

Sticky

Sticky bits are bit-wise ORed for the Enqueue, Enqueue with Transmit, Enqueue with Transmit Copy, and Enqueue with
Transmit with Discard commands.

The PAB engine saves the current sticky bits in the CDB for the reassembly. A new reassembly is initialized with the
sticky bits of the initial segment sticky value. The PAB sends a reassembly’s sticky bits with its output task(s) as part of
the PAB status byte. Software may use sticky bits to pass or accumulate information from input tasks to output tasks.
The PAB does nothing to modify or interpret them except as described within the individual command descriptions.
The sticky bits stored in the CDB are not affected by the GetStatus and Passthrough commands.

Using the Enqueue Commands

The Enqueue commands add the incoming task data to a reassembly. The incoming task is generally associated with a
packet, and the data from the packet that is enqueued is a segment.

SeqCheckEnable BlockSequenceCheck Update the reassembly CDB with
SeqNumber value Perform sequence check

0 0 No No

0 1 Yes, except for the following commands:
GetStatus
PassThrough

No

1 0 Yes, except for the following commands:
GetStatus
PassThrough

Yes, except for the following
commands:
Cleanup
Passthrough
GetStatus

1 1 Yes, except for the following commands:
GetStatus
PassThrough

No

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 69 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 4: Packet Assembly Block (PAB) Engine
PAB Commands

Command parameters permit you to add the incoming task at any point in the reassembly. You can also select a range
of data from the packet for enqueuing. The result of reassembling segments is a reassembly packet. The following
figure illustrates the segment, Enqueue command, and reassembly packet.

Figure 11 Segment, Enqueue Command, and Reassembly Packet

In the preceding figure, there are three tasks associated with segments 1, 2, and 3. Each task is sent to the PAB with an
Enqueue command. The command parameter for the reassembly ID is 100. The result is a part of reassembly 100. The
resulting reassembly packet consists of segment 1, 2, and 3.

Enqueue Commands

The PAB engine uses the following Enqueue commands.

 Enqueue
 Enqueue with Transmit
 Enqueue with Transmit Copy
 Enqueue, Transmit, and Discard

Enqueue Command Parameters

You must configure the following parameters for the Enqueue commands.

 Length
 Startoffset
 FirstOffset
 WriteOffset
 LengthBitOffset
 DestBitOffset

 There are special conditions that affect how the PAB interprets the Enqueue command parameters. These conditions
are described with each of the following individual parameters.

Length

 The PAB uses the Length value, along with the StartOffset, FirstOffset, LengthBitOffset, and the actual segment length
to determine which part of the segment to enqueue and where to enqueue it. The PAB applies the StartOffset data to
every segment except the segment that begins the reassembly. This segment is called the initial segment and, for the
initial segment, the PAB uses the FirstOffset instead of the StartOffset.

The default value of 0 means that the PAB should enqueue the entire segment (assuming the LengthBitOffset value is
also 0). The following figure illustrates the actual segment size the PAB reassembles as a function of the actual
segment length, StartOffset, LengthBitOffset, and Length parameters.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 70 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 4: Packet Assembly Block (PAB) Engine
PAB Commands

Figure 12 Actual Segment to Be Reassembled

When the sum of Length and LengthBitOffset is 0; then the length to be reassembled is the effective segment length.

StartOffset

StartOffset is the number of bytes to exclude from the original segment. For the initial segment that starts the
reassembly, the information in FirstOffset is used and the value in StartOffset is ignored. Generally, the StartOffset
value should be less than the actual segment length.

Note the following conditions for the StartOffset parameter.

 When the value of StartOffset is greater than or equal to the actual segment length, the length of the actual
segment to be reassembled is 0. The input task is treated as having no data.

 When the value of StartOffset is less than the actual segment length and the sum of StartOffset and Length and
LengthBitOffset is greater than the actual segment length, the actual segment to be reassembled is the effective
segment length. In the previous Actual Segment to Be Reassembled figure, the difference between the actual
segment length and StartOffset is called the effective segment length. A sticky interrupt status bit is set to record
this unexpected event.

The StartOffset default value is 0.

FirstOffset

The FirstOffset is the number of bytes to be excluded from the original initial segment. The initial segment is the
segment that is received by the PAB at the start of the reassembly. Generally the FirstOffset value should be less than
the actual segment length.

Note the following conditions for the FirstOffset parameter.

 When FirstOffset is greater than or equal to the actual segment length, the Actual segment to be reassembled is 0.
The input task is treated as having no data.

 If FirstOffset is less than the actual segment length and the sum of FirstOffset and Length and LengthBitOffset is
greater than the actual segment length, the actual segment to be reassembled is the effective segment length. In
the previous Actual Segment to Be Reassembled figure, the difference between actual segment length minus
FirstOffset is called the effective segment length. A sticky interrupt status bit is set to record this unexpected
event

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 71 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 4: Packet Assembly Block (PAB) Engine
PAB Commands

WriteOffset

The default value of 0xFFFF indicates this segment is to be enqueued at the end of the current reassembly. Otherwise,
this value specifies the location where the PAB writes the first byte of the segment. Because a segment can be
enqueued in any location of the reassembly packet, the following conditions are possible.

 Leaving an empty space in front of a reassembly packet.
 Leaving one or more empty spaces in the middle of a reassembly packet.
 Overwrite a previously enqueued segment.

 The following figure illustrates the previous conditions.

Figure 13 WriteOffset on Enqueue Commands

In the preceding figure, there are three Enqueue commands associated with segment 1 (purple), segment 2 (green),
and segment 3 (blue). Segment 1 is the initial segment enqueued to the reassembly packet. Then segments 2 and 3
come to the reassembly. The Segment 1 WriteOffset creates a hole in the reassembly packet. Since the Segment 3
WriteOffset lies within the segment 2 data; data is overwritten. The preceding figure also shows that holes can exist in
front and in the middle of the reassembly.

For the case when you need to transmit two or more times from a single active reassembly, the PAB restricts the
minimum value for the WriteOffset parameter, requiring that the minimum value of WriteOffset be greater than or
equal to the MinEnqueueOffset value. The MinEnqueueOffset is a value that points to the location immediately after
the last byte of the previously transmitted packet from the reassembly. In other words, if a reassembly is transmitted
up through byte n, then the MinEnqueueOffset points to byte n+1. For example, if there are 1000 bytes in a
reassembly, then a Transmit command (01000) is called with length information of 500 bytes. In this case, the
minimum value of the following WriteOffset must be greater than or equal to 500. This prevents data from a
reassembly being referenced by two or more output tasks, which can cause data to be unintentionally overwritten.

LengthBitOffset

The LengthBitOffset command parameter and the Length parameter permits you to specify the length of the
segment to be enqueued in bit units. Generally, for byte level reassembly, you should leave this field 0, in which case
the length of the segment to be reassembled is specified by the Length command parameter in byte units. The
default value is 0.

DestBitOffset

This DestBitOffset command parameter along with the WriteOffset parameter allows you to specify the write location
of the segment to be enqueued in bit units. If the WriteOffset parameter is set to 0xFFFF, the information in the
DestBitOffset is ignored. Generally, for byte level reassembly, you should leave this field as 0, in which case the write
location of the segment to be reassembled is specified by the WriteOffset command parameter in byte units. The
default value is 0.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 72 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 4: Packet Assembly Block (PAB) Engine
PAB Commands

Enqueue with Transmit Command

The Enqueue with Transmit command appends an incoming segment to a particular reassembly ID and then
transmits the entire reassembly. To transmit only part of the reassembly, use a Transmit command.

Enqueue with TransmitCopy Command

The Enqueue with TransmitCopy command appends the incoming segment to a particular reassembly ID and then
transmits a copy of the entire reassembly to the next engine.

Enqueue with Transmit with Discard Command

The Enqueue with Transmit with Discard command is used to append the incoming segment to a particular
reassembly ID, transmit the entire reassembly, and remove it from the reassembly.

Using the Transmit Commands

The Transmit commands transmit a packet from a particular reassembly ID. These commands allow you to select all of
a reassembly or a section of the reassembly to be transmitted as the packet sent with the Output Task.

The Transmit commands use the same parameters as the Enqueue commands to define the information about the
offset and the length, but instead of defining the range of data for the segment, the Transmit commands use them to
define the range of data of the reassembly to be transmitted.

The transmit command does not discard the information from the reassembly. To start a new reassembly, discard the
information in the reassembly with the Transmit with Discard command.

The following figure shows four segments in a reassembly. In the figure, the reassembly packet consists of part of
segment 2, all of segment 3, and part of segment 4. The WriteOffset, DestBitOffset and the Length parameters
identify the part of the reassembly to transmit.

Figure 14 Transmit Command Illustration

Transmit Commands

The Transmit commands include:

 Transmit
 TransmitCopy
 Transmit and Discard

You must configure the following parameters for the Transmit commands.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 73 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 4: Packet Assembly Block (PAB) Engine
PAB Commands

 Length
 WriteOffset
 LengthBitOffset
 DestBitOffset

Length

The Transmit Length parameter requests the PAB to transmit the entire reassembly from the specified WriteOffset and
DestBitOffset (assuming the LengthBitOffset value is 0). When Length is not zero, the PAB uses this value, along with
the WriteOffset, DestBitOffset, and LengthBitOffset to determine which part of the reassembly to transmit.

There are two special conditions:

 If the sum of WriteOffset and DestBitOffset and Length and LengthBitOffset is greater than the actual reassembly
length, the PAB transmits no data and sets a sticky interrupt status bit to indicate this unexpected event.

 If the sum of Length and LengthBitOffset equals 0, the PAB transmits the entire reassembly starting from the
location specified by the sum of WriteOffset and DestBitOffset.

The default value is 0. The following figure illustrates the relationship between these parameters.

Figure 15 Reassembly Packet

WriteOffset

The default value is 0xFFFF and the PAB engine transmits the reassembly PDU from byte location 0. The WriteOffset
and DestBitOffset parameters indicate the location from which the PAB should transmit the reassembly PDU.

The PAB engine can generate one of the following exceptions related to the WriteOffset parameter.

 When the sum of WriteOffset and DestBitOffset is greater than the actual reassembly length, the PAB generates
an exception and does not transmit data.

 When the sum of the WriteOffset, DestBitOffset, Length, and LengthBitOffset is greater than the actual
reassembly length, the PAB generates an exception and does not transmit data.

LengthBitOffset

The LengthBitOffset parameter and the Length parameter permit you to specify the length in bits of the reassembly to
be transmitted. Generally, for byte level reassembly, leave this field as 0 so the Length parameter specifies the length
of the segment to be reassembled in bytes. The default value is 0.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 74 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 4: Packet Assembly Block (PAB) Engine
PAB Commands

DestBitOffset

The DestBitOffset parameter and the WriteOffset parameter permit you to specify from where to transmit the
reassembly. If the WriteOffset parameter is 0xFFFF, the PAB ignores information in the DestBitOffset parameter.
Generally, for byte level reassembly, leave this field as 0 so the PAB can use the location specified by the WriteOffset
parameter in bytes as the destination for the packet. The default value is 0.

TransmitCopy Command

When using the Transmit command, if you transmit data more than once from the same reassembly, two or more
tasks result that point to the same packet data. If different tasks reference the same packet in memory, there is the
potential for an unintentional overwrite of data as the tasks are processed independently by other downstream
engines. Also, editing packet data in the PAB after it has been transmitted can cause a similar issue.

To transmit packet data more than once without a potential conflict, the TransmitCopy command duplicates the
packet data for the reassembly in memory, and transmits the duplicated packet data from a reassembly ID with a new
task. The original data is left in its reassembly, and its state does not change. Similar to the Transmit command, this
command includes the information about the offset and the length of the data in the reassembly to be transmitted.

This command is useful when a packet needs to be edited and transmitted multiple times. For example you can send
multiple versions of a packet, each one with the header edited slightly differently.

Transmit with Discard Command

The Transmit with Discard command transmits a packet from a particular reassembly ID. The command includes the
information about the offset and the length of the reassembly to be transmitted. The Transmit with Discard command
is identical to the Transmit command as it sends the original reassembly pointers in an output task. But the Transmit
with Discard command discards reassembly packet data, starting from the beginning of the reassembly, up through
the last byte transmitted.

NOTE The PAB uses special handling for Discard and Transmit with Discard commands that specify a non-zero
LengthBitOffset. If the LengthBitOffset ends at a non-byte boundary, the PAB discards only up to the prior byte
boundary–that is, the discard is rounded down. If you do not end LengthBitOffset on a byte boundary, you can get
unpredictable results.

Discard Command

The Discard command discards data from the front of a reassembly. The Length and LengthBitOffset parameters
determine the number of bytes or bits to be discarded from the reassembly. If these parameters specify the entire
reassembly is to be discarded, the PAB terminates reassembly. If the discard command is called and there is data left in
the reassembly, the PAB treats the first byte of data which is not discarded as being at offset 0 for any future
commands and sets the MinEnqueueOffset parameter to zero.

Application software must track this value for future commands on the reassembly to specify a non-default
WriteOffset in the future for this reassembly. If the software does not specify a WriteOffset parameter in the future,
there is no need to track this value.

Use the following parameters to configure the Discard command.

 Length
 LengthBitOffset

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 75 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 4: Packet Assembly Block (PAB) Engine
PAB Commands

Length

The default value is 0, which indicates that the entire reassembly is to be discarded. Otherwise, the Length and
LengthBitOffset parameters specify the number of bytes and bits the PAB should remove from the beginning of the
reassembly.

An exception condition, shown in the Discard the Data from the Reassembly figure, applies to the Length parameter
when used with the Discard command. If the sum of the Length and LengthBitOffset is greater than the actual
reassembly length, the PAB discards the entire reassembly and generates an exception event since it tries to access
data that does not exist.

Figure 16 Discard the Data from the Reassembly

LengthBitOffset

The LengthBitOffset and the Length parameter permit you to specify the amount of the reassembly to be discarded in
bits, starting from the beginning of the reassembly. Generally, for byte level reassembly, you should leave this field as
0 so the amount of the reassembly the PAB discards is specified by the Length parameter in bytes. The default value
is 0.

NOTE The PAB uses special handling for Discard and Transmit with Discard commands that specify a non-zero
LengthBitOffset. If the LengthBitOffset ends at a non-byte boundary, the PAB discards only up to the prior byte
boundary–that is, the discard is rounded down. If you do not end LengthBitOffset on a byte boundary, you can get
unpredictable results.

Sticky Discard Command

The Sticky Discard command marks the packet assembly as corrupted (dirty). This command directs the PAB to free
the memory for the reassembly ID and drop all subsequent enqueued data. The PAB maintains the reassembly in this
state until the PAB receives a Transmit with Discard, Cleanup, Enqueue with Transmit with Discard, or Discard
command.

 The Reassembly Index is the only parameter required for this command. Leave all other parameters as default values.

Cleanup Command

The Cleanup command clears a reassembly. Use the Cleanup command only when a particular reassembly index is in
an unknown state. This may occur if software is unable to track the state of a reassembly that has experienced an
exception. The Cleanup command is equivalent to a Discard command, which discards the entire reassembly, with the
following distinctions:

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 76 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 4: Packet Assembly Block (PAB) Engine
PAB Exception Handling

 The PAB never performs Sequence checking.
 The PAB does not check the DiscardOnTimeout parameter value for consistency with the existing

DiscardOnTimeout value in the CDB.

 The Reassembly Index is the only command parameter required for this command. Leave all other parameters at their
default values.

Passthrough Command

The Passthrough command is a special command that does not use any command parameters. The PAB simply passes
the task on to the next data path accelerator engine. Therefore, you can leave all command parameters at their default
values.

GetStatus_reasmState Command

The GetStatus_reasmState command is a debugging command that lets you check the CDB state for a particular
assembly. The ReassemblyIndex is the only command parameter needed for this command. This command does not
change any state or status of any reassembly. You can leave all other command parameters at their default values.

GetStatus_reasmPrioMem Command

The GetStatus_reasmPrioMem command lets you check the PAB memory usage for the priority used by a particular
reassembly. The command returns information on PAB memory usage (in 256-byte units) for the priority specified by
the indicated reassembly, as well as PAB memory usage (in 256-byte units) total for all priorities. The only parameter
needed for this command is the ReassemblyIndex. This command does not change the state or status of any
reassembly. Leave all other parameters at their default values.

GetStatus_PrioMem Command

Te GetStatus_PrioMem command is a debugging command which allows you to check the memory usage for a
specified priority. The command returns information on PAB memory usage (in 256-byte units) for the priority
specified by the PAB input task parameter, as well as PAB memory usage (in 256-byte units) total for all priorities. This
command does not change the state or status of any reassembly. Leave all command parameters at their default
values.

PAB Exception Handling

PAB detects internal hardware inconsistencies and errors, and records them in sticky bits or counters which can be
accessed using the configuration.

NOTE The PAB exception handling described in this section applies to all commands except GetStatus.

Input tasks are checked for inconsistencies which may have been caused by hardware errors in engines sending tasks
to the PAB. Note that such errors can also be software errors. The PAB checks the consistency of the incoming input
tasks with respect to Axxia standards. Input task parameters are checked for consistency with respect to PAB
expectations. The exceptions are recorded or reported as described previously in PAB command and parameter
descriptions.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 77 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 4: Packet Assembly Block (PAB) Engine
PAB Performance Monitoring Facilities

Hardware Exception Handling

PAB records error exceptions in sticky bits or counters which may be read by the CPU. You must check these bits and
counters if you suspect a system malfunction, or you want to determine if the system is operating correctly after
processing packets.

Error Containment

The PAB does not retain system state, so you must explicitly clear the state after an error is detected. PAB dynamically
allocates memory blocks to hold reassembly data. In a system running without exceptions these blocks are
deallocated as the reassemblies are transmitted. If an exception is detected which may interfere with this process, PAB
transmits an output task indicating this event and frees up the reassembly memory immediately. Software is then
responsible for terminating the reassembly with a Discard or Cleanup. PAB marks the reassembly as corrupted so that
a subsequent Transmit command of the reassembly does not result in referencing memory which has been
deallocated.

Error Recovery

The PAB does not retain system state, so you must explicitly clear the state after an error is detected. The PAB does not
have any error recovery mechanisms. The PAB engine depends on the application software to clear the reassembly for
the error recovery process.

Error Syndrome

The PAB records error events primarily in sticky bits, not counters. The sticky bits should be explicitly cleared by CPU
writes when attempting to identify or isolate faults in a debugging environment.

The only events stored in counters are the exceptions logged in the output tasks. These counters are read-only and are
cleared by hardware using hardware reset.

PAB Performance Monitoring Facilities

The PAB maintains performance statistics that a user can read with a software application. The Axxia PAB engine
supports the following statistics.

 System memory blocks – Used for reassembly data, per priority and across all priorities. This value is the number
of blocks, of all sizes, managed by the MMB.

 System memory bytes – Used for reassembly data, per priority and across all priorities. Use a software application
that invokes the GetStatus command to retrieve the System memory bytes.

 Two SMON counter instances – Used to monitor variety of conditions.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 78 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 5: Modular Traffic Manager (MTM) Engine
Overview

Chapter 5: Modular Traffic Manager (MTM) Engine

The MTM engine performs scheduling and buffer management. It supports configurable and programmable
scheduling and traffic management algorithms.

Overview

The Modular Traffic Manager (MTM) accelerator engine performs buffer management and scheduling. It supports
configurable and programmable scheduling, plus traffic management algorithms. The MTM engine can also manage
flow control.

The MTM engine features unicast and enhanced multicast output. It can generate multiple tasks without duplicating
the packet data, resulting in effective device resource usage. A single input task can generate multiple new tasks using
the multicast feature. The MTM engine processes each of the newly created tasks separately with its own data set. The
packet data does not need to be duplicated because each task can point to the same packet data.

Features

The MTM engine has the following feature categories.

 Buffer Management
 Traffic Scheduling and Traffic Shaping
 Flow Control
 Multicast Support

Buffer Management

The MTM engine is equipped with a Traffic Manager, which determines whether to accept or discard a packet and
writes the task into the MTM task queue. You can use a script to perform buffer management algorithms and to keep
statistics. The Traffic Manager supports up to 64 scripts (each with 1K instructions) to implement different buffer
management algorithms.

Use the Traffic Manager to perform the following buffer management functions.

 Select a discard decision for the received task. The Buffer Traffic Manager uses the buffer algorithm programmed
in the script to determine whether it enqueues or discards the task.

 Maintain the state of the task by sending the task information for enqueuing.
 Generate backpressure messages to other engines or apply backpressure at any level of the scheduling hierarchy.
 Remove backpressure.

You can program the Buffer Traffic Manager engine policy to keep or discard a packet based on the following criteria.

 Current global and flow traffic thresholds.
 Rate policing algorithms.
 Packet priority.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 79 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 5: Modular Traffic Manager (MTM) Engine
MTM Processing

Traffic Scheduling and Traffic Shaping

The MTM uses up to seven levels of a hierarchy for packet rate shaping and scheduling and contains a Traffic Shaping
compute engine. You can use either the supported scheduling or shaping modes or write your own algorithm within
a Traffic Shaping compute engine script. You can also use the script for maintaining additional statistics. Similar to the
Traffic Manager compute engine, the Traffic Shaping engine can have up to 64 scripts, each with 1 K instructions.

The MTM scheduler supports the byte-accurate, dual-leaky-bucket algorithm based shaping with Smoothed Deficit
Weighted Round Robin (SDWRR), Deficit Weighted Round Robin (DWRR), and strict priority scheduling of eligible
queues and hardware schedulers. It also supports peak and sustained rate shaping or peak and minimum rate
shaping.

Flow Control

The MTM engine can receive and generate flow control with backpressure signals received from and sent to other
engines.

The MTM engine uses the backpressure mechanism to perform the following functions.

 Pause scheduling of a queue or scheduler based on external backpressure. For example, backpressure can be
applied by the EIOA output ports when they receive PAUSE frames from a client.

 Pause scheduling of a queue or scheduler based on internal script processing.
 Backpressure an engine upstream in the processing path based on internal script processing; for example, to

backpressure a flow at the start engine in the processing path.

Both the Traffic Manager and Traffic Shaper compute engines can send backpressure messages on the backpressure
ring.

Multicast Support

A single input task can generate multiple new tasks using the multicast feature. Each new task is processed separately
with its own data set in the MTM. Because each task can point to the same packet data, the packet data does need to
be duplicated.

MTM Processing

MTM does not process the packet data. The MTM can either make a discard decision on the task in a packet or
schedule out the tasks to the next engine in the pipeline. For multicasting, new tasks are created and point to the
same packet data.

The MTM engine processes tasks using the following steps.

1. The MTM engine receives packet tasks from accelerator engines that need task scheduling. When a task arrives,
the Buffer Traffic Management script runs and the MTM makes a decision to keep or discard the task.

2. For expanded unicast or multicast packets, the MTM creates new tasks and uses buffer management for the
discard decision.

3. When the MTM engine discards a task, it deletes the task and the packet data from memory.

4. The MTM engine enqueues the tasks it keeps.

5. The MTM engine selects output tasks based on the scheduling structures and algorithms.

6. The MTM engine removes the task from the queue, generates an output task for the packet, and sends it to the
next engine in the pipeline.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 80 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 5: Modular Traffic Manager (MTM) Engine
MTM Functional Description

The MTM scheduler supports byte-accurate dual-rate shaping with Smoothed Deficit Weighted Round Robin
(SDWRR), Deficit Weighted Round Robin (DWRR), and strict priority scheduling of eligible queues and schedulers. It
supports peak and sustained, or peak and minimum rate shaping.

MTM Functional Description

Scheduling Packets

To achieve the scheduling behavior that you want for multiple traffic flows, you create a scheduling hierarchy of up to
seven levels consisting of MTM queues and schedulers:

 An MTM queue is an entry point for packets into the scheduling hierarchy. When a packet is enqueued for
scheduling, it is assigned to an MTM queue. A queue can be assigned to a scheduler that is at any level of the
scheduling hierarchy you create, except the top level, level 0.

 An MTM scheduler is a configurable arbiter and rate enforcer for packets assigned to queues and schedulers from
one level to the next higher level. Each scheduler can support up to 64,000 entities: queues and schedulers.

Of the seven scheduling hierarchy levels, level 0 is the top level and has a single scheduler, called the Root Scheduler.
The Root Scheduler can have a maximum of 32 children, all of which must be schedulers. Level 6 can only have
queues, since it is the lowest level. Queues can be assigned to levels 2 through 6.

When building a scheduling hierarchy, you begin with level 0 and add the levels you need, up to a total of six, to
support your application. The following figure illustrates a sample scheduling hierarchy using six levels.

Figure 17 MTM Scheduling Hierarchy Structure

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 81 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 5: Modular Traffic Manager (MTM) Engine
MTM Functional Description

Root Scheduler

The Root Scheduler is the top-level scheduler and is the only scheduler in level 0. It is the last scheduler in any
scheduling path, and determines the packet to be sent out of the MTM to the next engine in the engine sequence. The
Root Scheduler only supports schedulers; queues cannot be Root Scheduler children.

As the last scheduler, it does not have a scheduling mode, and uses the SDWRR arbitration mode. The Root Scheduler
is work conserving. The rate for the Root Scheduler, defined by the sum of the rates of its children, is the maximum
output rate for your application.

The Root Scheduler polls its level 1 children for traffic, and when traffic is available, it transmits a packet. As the level 1
children are serviced, they service their level 2 children, and the process continues down to each level of the hierarchy.

Adjusting Packet Size

For both buffer management and scheduling, you can define a packet size adjustment to be used in the
MTM calculations. For example, when scheduling the packet in the MTM engine before sending it to the SED engine to
add a VLAN tag, you can add four bytes to use in the buffer management and scheduling rate calculations. Similarly,
when planning to remove bytes from the packet using the SED engine, you can subtract that amount from the size for
scheduling calculations.

The packet size adjustment can be an input task parameter, or from the expander flow table, or from the Buffer
Manager script. In addition, each scheduler level has a configured adjustment that enables the adjustment to be
different at every level of the hierarchy. The adjustments are cumulative.

Arbitration and Scheduling Modes

Schedulers can support up to 64,000 children, and the children can be a combination of queues and schedulers. The
arbitration mode of the scheduler and the scheduling mode of the children controls the behavior of the scheduler
and its children.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 82 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 5: Modular Traffic Manager (MTM) Engine
MTM Functional Description

Figure 18 Arbitration and Scheduling Modes

The arbitration mode determines the algorithm used to service the children, while the scheduling mode defines how
the child is serviced within the parent scheduler’s algorithm.

Each scheduler maintains either one or two lists that track the child queues and schedulers that have traffic.
Depending on the arbitration mode you select for the scheduler, the list or lists are managed and serviced differently.
The following figure shows the basic structure of a two-list scheduler.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 83 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 5: Modular Traffic Manager (MTM) Engine
MTM Functional Description

Figure 19 Sample Scheduler Structure

Lists are not used for strict priority, and a single list is used for DWRR. You can define a scheduler’s lists to be managed
by hardware or by a Traffic Shaper Compute Engine script. For any given path through the hierarchy — starting with a
queue and ending with the root scheduler — script-managed arbitration can only be configured for a single
scheduler in that path.

You can independently configure each scheduler to support one of the following arbitration modes for its children.

 Smoothed Deficit Weighted Round Robin (SDWRR)
 Script-managed SDWRR
 Deficit Weighted Round Robin (DWRR)
 Script-managed DWRR
 Strict Priority
 Script-managed Strict Priority

Just as the arbitration mode defines how the scheduler arbitrates its children, each child node has a scheduling mode
that defines how the child is scheduled within the arbitration mode. For each arbitration mode, the scheduler’s
children must be assigned a compatible scheduling mode.

The following scheduling modes are used.

 SDWRR – Required for SWDRR arbitration.
 DWRR – Required for DWRR arbitration, defines the priority the child uses.
 Strict Priority 0-3 – Required for strict priority arbitration, defines the priority, set at 0-3, and the list entry point for

the child, such as at the top or tail of lists 0 and 1.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 84 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 5: Modular Traffic Manager (MTM) Engine
MTM Functional Description

Rate Shaping Traffic

The Axxia device employs the token bucket algorithm to enforce rates by shaping traffic. Every queue and scheduler
has a programmable dual-rate, dual-bucket mechanism available for controlling its rate and traffic shaping behavior.

The two buckets, called primary and secondary, are configured a with the following parameters.

 Peak rate and sustained rate (shaping mode = PR_SR)
 Peak rate and minimum rate. Peak and minimum rate shaping is not available for strict priority schedulers.

(PR_MR)
 Peak rate only (PR)
 No rate shaping (NONE)
 Script (SCRIPT)

Both buckets operate identically for the peak and sustained rates, using the token bucket algorithm. You set the
bucket type, rate, and size to define the rate-managing behavior for the bucket.

The minimum rate is specified differently, in bytes of credit per unit.

These following parameters define the behavior of the bucket.

 Bucket type:
— Peak and sustained rate buckets – Calculate the delays used for traffic shaping rate enforcement.
— Minimum rate buckets – Determine when a queue or scheduler gets additional round robin weight credit to

help it maintain its minimum rate.
 Bucket rate – Sets the ratio of time/bytes that determines how quickly the bucket fills up relative to the packet

size.

For example, a rate of 100 MB/s defines a ratio of 10 ns/byte. Each time a packet is sent from a scheduler, the size
of the packet is converted from bytes to time and added to the bucket, and the elapsed time is subtracted from
the bucket.

 Bucket size – Defines how much traffic can pass before the bucket rate adjusting action takes place.

For example, when using peak and sustained rates, the peak bucket size defines how much traffic can burst at the
maximum line or media rate before the peak rate shaping is enforced. Similarly, the sustained bucket size defines
how much traffic can pass at line and peak rates before the sustained rate shaping is enforced.

With this behavior, the two bucket sizes define how much traffic a queue or scheduler can send to catch up after a
period of no traffic by using the line rate and the peak rate shaping before the sustained rate shaping is enforced.

The following figure showing packets on the wire over time, illustrates the relationships between bucket size, rates,
and packet rate shaping, assuming a steady stream of packets after an idle time.

Figure 20 Packet Shaping Using Peak and Sustained Buckets

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 85 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 5: Modular Traffic Manager (MTM) Engine
MTM Functional Description

In this example, after an idle time, the peak and sustained rate buckets are empty. When traffic first arrives, it is sent at
the maximum parent scheduler rate until the peak rate bucket fills up, causing the peak rate delays to be applied to
packets to maintain the peak rate. Once the sustained rate bucket fills up, the longer sustained rate delays are used, to
maintain the sustained rate.

Scheduler Operation

The Axxia architecture supports a scheduling hierarchy of up to seven levels, composed of schedulers and queues.
You can define the hierarchy at configuration, and modify it dynamically. A scheduler can have both queues and other
schedulers as its children.

Each scheduler services its children at its defined rate, using the servicing algorithm defined by its arbitration mode.

Every time the scheduler sends a packet from one of its children, after the packet is sent, the parent scheduler checks
the status of two calculations:

 The child’s assigned dual-bucket rates, if any, calculated based on the packet size and the elapsed time since the
last packet was sent from the child.

 If the peak or sustained rates have been exceeded, the child is assigned to the timer block for a time equal to the
amount of time that the child is ahead in scheduling for the exceeded rate. If it is over both peak and sustained
rates, the greater value is used. Once it has been in the timer block for the allotted time, it is returned to its
appropriate list:

— For SDWRR, that is the tail of the pending list.
— For DWRR, the child is returned to the tail of its list.
— For strict priority, the child is returned to its assigned location.

 The child’s current round robin weight limit, in bytes, after the packet size is subtracted from it.

Strict priority scheduling mode queues and schedulers do not use the DWRR rate limit except when they are
configured for starvation avoidance. When a node has sent traffic equal to or greater than its current weight, it will
allow the lower priority siblings to transmit one packet.

— If the current round robin weight is positive, the queue or scheduler stays at its current spot for DWRR or strict
priority scheduling. For SDWRR scheduling, the child is placed at the tail of the active list.

— If the current round robin weight is negative or zero, the queue or scheduler is placed at the tail of either the
pending list for SDWRR or its entry list location for DWRR, and its round robin weight limit is added to its
current weight.

These two calculations are performed independently, with the decision to put a child in the timer block taking priority
over the round robin limit decision of where to place the child. Placing a child in the timer block does not affect the
adding or not adding of the weight to the child’s current round robin weight limit.

SDWRR Scheduling

The SDWRR algorithm treats the two scheduler lists as an active list that is being serviced, and a pending list that holds
queues and schedulers with traffic that are waiting to be serviced. See the previous Sample Scheduler Structure figure.

When a child queue or scheduler receives traffic, it is entered into the pending list. When the active list has completed
servicing its queues and schedulers, it becomes the pending list, and the pending list becomes the active list. Once
the pending list becomes the active list, the children are serviced in sequence from the head of the list to the tail of the
list.

A queue or scheduler at the head of the list transmits a single packet when its turn arrives. Then, if it has additional
traffic, it is placed at the tail of the active list. The child remains in the active list until its round robin weight goes
negative or zero, or it has exceeded one of its shaping rates.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 86 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 5: Modular Traffic Manager (MTM) Engine
MTM Functional Description

The minimum SDWRR rate used, measured in bytes, should be equal or greater than the Maximum Transfer Unit (MTU)
size for the connection.

NOTE Schedulers configured with SDWRR arbitration require that all children are configured with the SDWRR
scheduling mode.

DWRR Scheduling

The DWRR algorithm uses a single list for servicing children. The child at the head of the list is always serviced.

When a child is being serviced at the head of the list, it is serviced until its round robin weight is negative or zero, or it
has exceeded a shaping rate, then it is put at the end of a list.

Strict Priority Scheduling

A Strict Priority scheduler has up to four children and they are serviced according to priority.

The children are assigned a priority, 0-3, with 0 as the highest priority and 3 as the lowest. The highest priority child
traffic is always serviced. You can configure a starvation avoidance mode that permits lower priority traffic to be
serviced at defined intervals.

Controlling Arbitration with Scripts

You can control one level of scheduling arbitration in a traffic path through the scheduling hierarchy using a Traffic
Shaper script. After the scheduler has scheduled a queue, the task associated with the queue is read out from memory
and the traffic shaping script associated with that path in the hierarchy is run. Each path can have only one scheduler
associated with a script.

You must always define a Traffic Shaper script for any given path through the scheduling hierarchy. The Traffic Shaper
script always runs even if it does not affect the scheduling at any level in the hierarchy. If you choose to use the
hardware scheduling at every level of the hierarchy, you can define a null script, or use the Traffic Shaper script to
perform additional functions, such as statistics gathering.

The following figure shows an example of a scheduling path and a script-based scheduler.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 87 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 5: Modular Traffic Manager (MTM) Engine
MTM Functional Description

Figure 21 Scheduling Path with Script-based Scheduler

When using a Traffic Shaping script to control arbitration, the structure and default servicing of the lists is still
controlled by the arbitration mode selected for the scheduler, such as SDWRR or DWRR. By associating a Traffic Shaper
script with a scheduler, you can use the script to control how its child queues and schedulers are entered into the
scheduler lists.

The software scheduling model allows a traffic shaper script to control the scheduling at any level of the scheduling
hierarchy, for only one level. When the Traffic shaper script is controlling the scheduling at any level, it is responsible
for both enforcing the arbitration policy at this level and any shaping of the children of the scheduler.

 From the Traffic shaper script, you can control where a child should be placed in the scheduler lists after scheduling:

 For SDWRR arbitration, the script determines if the child is placed in the active or pending list.
 For DWWR arbitration, the script determines if the child is placed at the head or tail of the list.

The script also controls when a child is sent to the timer block and defines the delay for the timer block.

Applying and Receiving Backpressure

The MTM engine can receive and send backpressure for the following purposes:

 To pause scheduling of a queue or scheduler, based on external backpressure. For example, backpressure can be
applied by the EIOA output ports when they receive PAUSE frames from their downstream client.

 To pause scheduling of a queue or scheduler based on internal script processing.
 To backpressure an engine earlier in the processing path based on internal script processing. For example, to

backpressure a flow at the start engine in the processing path.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 88 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 5: Modular Traffic Manager (MTM) Engine
Defining Buffer Management Policies

The MTM can be backpressured at any level in the scheduler hierarchy. Backpressure can be received from other
engines on the Backpressure Ring or can be asserted to the Backpressure Ring from within the MTM from the Buffer
Manager or Traffic Shaper compute engines. The backpressure command is sent with the ID of the queue or
scheduler, for inband signaling using the backpressure ring.

Backpressure causes the scheduling entity to be removed from the scheduling structure after it has sent the next
packet out. When backpressure is turned off, the entity re-enters the scheduling process.

The MTM can also generate messages to be sent on the backpressure bus. The messages can be generated either from
the Buffer Manager or Traffic Shaper compute engine scripts.

The MTM also has the ability to generate backpressure messages based on global buffer usage.

Defining Buffer Management Policies

You can program the Buffer Traffic Management Compute Engine policy to keep or discard a packet based on a
number of factors, including global and flow traffic threshholds, packet priority, and rate policing algorithms.

Building the Scheduling Hierarchy

You create the scheduling hierarchy using the Axxia Software Environment (ASE). To create the hierarchy, you add a
MTMSchedulingLevel element for each level you want in your hierarchy, and add the number of schedulers you want
at each level.

The schedulers and queues for a level are kept in an internal scheduling engine table that you define in the ASE. You
can also use the RTE to dynamically modify the scheduling hierarchy.

MTM Task Receive Queues and Buffer Management

Task Receive Queues

The MTM supports four task receive queues. There is a low and high priority queue for unicast packets. And there is a
low and high priority queues for multicast packets. The separate queues are necessary because multicast packets can
take longer to enqueue, since multiple copies are generated from a single task.

The MTM provides a programmable (Strict/WRR) service policy between the Unicast and Multicast task queues. Within
a type, the high priority task queues are always serviced before the low priority task queues.

MTM and Expander Engines

In engine sequences, the MTM is represented by two accelerator engines: the MTM engine and the Expander engine:

 The MTM engine is an intermediate engine, used for unicast traffic. Received tasks are passed to the next engine
in the engine sequence, with any included parameters for downstream engines.

 The Expander engine is a start or end engine in an engine sequence. Received tasks end at the Expander, and new
tasks are generated. The Expander is used for multicast and expanded unicast traffic.

Each multicast task has a group ID, that has a set of assigned flow IDs that represent the multicast destinations.
Each flow ID is used as an index to a namespace table that defines the parameters for a new task generated by the
Expander.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 89 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 5: Modular Traffic Manager (MTM) Engine
MTM Task Receive Queues and Buffer Management

Expanded unicast traffic is unicast traffic that uses a flow ID with the Expander to assign parameters and generate
a new task, the same mechanism used for multicast traffic.

In engine sequences, the Expander performs the following functions.

— As an end engine, it receives either multicast or expanded unicast tasks. Based on a flow ID, it assigns
parameters and creates a new task for each packet to be scheduled.

— As a start engine, it launches the new multicast or expanded unicast tasks into the MTM engine for buffer
management and scheduling. It does not, however, send tasks to the MTM engine task receive queues; the
resulting tasks of the Expander remain internal to the MTM and go directly into buffer management and then
scheduling.

The Expander engine is a subset of the MTM, and, when used as the start engine in a sequence, it must always
be followed by the MTM engine.

For example, when developing an application that supports all three traffic types, you might use the following engine
sequences.

Table 16 Engine Sequences for Traffic Types

Both the MTM and the Expander engines share the same configuration information defined under the MTM engine
configuration under Engines → MTM in the ASE.

Task Arrival and Enqueuing Arbitration

The MTM and Expander engines receive the following task types.

 Unicast – These tasks, received by the MTM engine, represent a single packet, and the task parameters arrive
within the task.

 Multicast – These tasks, received by the Expander engine, represent a single packet that is sent to multiple
destinations by generating new tasks for each destination. The task parameters for each of the generated
multicast tasks come from a namespace table. Each multicast group defines a set of flow IDs that are used to
index the namespace table for the task parameters.

 Expanded unicast – These tasks, received by the Expander engine, represent a single packet, and, like multicast
generated tasks, the scheduling task parameters are supplied from the namespace table based on the flow ID.

The tasks that arrive at the MTM are arbitrated in three configurable ways:

 Task receive queues for all tasks. The MTM has four task queues:
— High and low priority queues for unicast and expanded unicast traffic
— High and low priority queues for multicast traffic

To determine the queue for a packet, you map the task priorities to high and low priority queues.

 Arbitration between expanded unicast and multicast tasks for entry into the expansion engine that assigns the
parameters to the tasks. This arbitration is between the expanded unicast flow IDs, and the flow IDs assigned to
the group IDs of multicast tasks.

 Arbitration between unicast tasks, including both unicast and expanded unicast tasks, and multicast tasks for
entry into the buffer management, TM compute engine.

Engine Sequence Traffic Type

MPP → MTM → EIOA Unicast

MPP → Expander Expanded unicast

MPP → Expander Multicast

Expander → MTM → EIOA Launching the expanded unicast and
multicast traffic task

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 90 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 5: Modular Traffic Manager (MTM) Engine
MTM Task Receive Queues and Buffer Management

 The algorithms used for each of these arbitrations are independently configurable and ca be strict priority or
weighted round robin. The following figure shows the arbitration points and the paths to them.

Figure 22 MTM Enqueuing Arbitration

As shown in the previous figure, each of the three task types have different paths to buffer management task
arbitration:

 Unicast tasks arrive in the unicast task receive queues, and when they are serviced from their task queue, they
enter task arbitration for buffer management.

 Expanded unicast tasks arrive in the unicast task receive queues, and when they are serviced, their flow ID enters
the Expander flow ID arbitration. Each expanded unicast flow ID is arbitrated with the multicast flow IDs,
generated from the arriving multicast tasks. When they are assigned a task and parameters in the Expander, the
newly generated tasks enter task arbitration for buffer management.

 Multicast tasks arrive in the multicast task queues, and when they are serviced, the Expander engine looks up the
flow IDs associated with the task group ID. These IDs are entered into the Expander flow ID arbitration. When an
ID is selected, it is assigned a task and parameters and the new task enters the Buffer Manager task arbitration.

The unicast and expanded unicast tasks arrive at the Buffer Manager arbitration in the order that they arrived in the
task queues. The unicast and the expanded unicast of the same priority are queued in the same task receive queue,
therefore their order is maintained.

Queue, Scheduler, and Global Parameters

The MTM supports 32 bytes of parameters per queue and 16 bytes of parameters per scheduler. These parameters are
common to both the Buffer Traffic Manager and the Traffic Shaper scripts. Changes made by the Buffer Traffic
Manager are visible to the Traffic Shaper compute engine.

When a queue uses a hardware scheduler instead of a script, 16 of the 32 queue parameters are used by the hardware
scheduler and are not available for the script in either the Buffer Traffic Manager or the Traffic Shaper.

In the Buffer Traffic Manager compute engine, the 32 bytes of queue parameters are available, in addition to the
16 bytes of parameters of its parent scheduler and another 16 bytes of parameters from another level in the
scheduling hierarchy, defined in software. It is possible to configure this level of the hierarchy for each queue.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 91 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 5: Modular Traffic Manager (MTM) Engine
MTM Task Receive Queues and Buffer Management

In the Traffic Shaper compute engine, 16B of parameters from the queue is available along with 16B of parameters
from the level at which the Traffic Shaper script is running and 16B of parameters from one level below where the
traffic shaper is running. If the traffic shaper is running one level above the queue and so the queue is not using the
hardware scheduler, all 32B of queue parameters are available. The other 16B are presented as the parameters from
one level below where the traffic shaper is running. Another 16B are available from level in the scheduling hierarchy
which is programmable for each queue.

The MTM also supports 32 bytes of Global Parameters. 16 bytes of Global parameters are writeable by the Buffer
Manager and 16 bytes are writeable by the traffic shaper. All 32 bytes are readable by both of the compute engines.

Buffer Management

For each task that arrives at the MTM, the Traffic Buffer Manager compute engine runs to determine if the packet
should be enqueued or discarded. You can define up to 63 buffer management scripts. Each task is assigned to a
queue and each queue is assigned a buffer management script, so the script used for a task depends on its queue.

The decision made by the script is based on the following information provided to the script using the register file.

 The following resource usage items involved.
— Global buffer threshold
— Global buffer size
— Total free memory
— Packets in the queue
— Blocks in the queue
— Memory used by the queue’s parent scheduler
— Memory used by a higher level scheduler, indicated by the queue structure by selecting the level higher than

the queue for traffic shaper and buffer management parameters
 The following packet and queue items involved.

— Packet length
— Packet length correction – When the size of the packet changes due to processing that occurs after the MTM

processing, and you want the packet buffer management decision to be based on the final packet size, you
can add or subtract a packet length correction value.

 The following parameters involved.
— 16 bytes of task parameters
— 16 or 32 bytes of queue parameters. If the parent scheduler does not use hardware scheduling, 32 bytes are

available.
— 16 bytes of parameters of the queue’s parent scheduler
— 16 bytes of parameters of the selected higher level scheduler
— 32 bytes of shared queue parameters. These parameters are visible to both the Traffic Shaper and Buffer

Traffic Manager scripts, and can be defined for groups of queues, so that when any queue in the group is
processed by the Buffer Traffic Manager or the Traffic Shaper, the script can access the 32 bytes of parameters
for the group.

— 16 bytes of Traffic Manager global parameters

Draining Traffic from Queues and Schedulers

APIs handle all of the tasks required to drain a queue or scheduler. The drain operation involves discarding all packets
in the queue or scheduler.

Perform the following steps to drain a queue or scheduler.

1. Stop all enqueues to the queue or scheduler you want to drain.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 92 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 5: Modular Traffic Manager (MTM) Engine
MTM Input and Output Parameters

2. Check to determine if the queue or scheduler has any memory associated with it. If it does, you can drain the
queue or scheduler in a register. The hardware reads all of the tasks in a queue, or all of the tasks in the queues
associated with a scheduler and frees the memory associated with those tasks. When the draining is complete,
the hardware signals by setting a bit. The MTM can also optionally assert an interrupt when tit completes
draining.

When emptying a queue, the MTM engine reads and empties the queue as fast as it can. If a scheduler is set to be
drained, the queues are drained one at a time. The scheduling rate of the queue does not affect how fast the queue is
drained. The MTM waits until one packet is scheduled from the queue, so it can be cleared from its parent’s scheduling
structure, then reads and deletes the other tasks in the queue.

NOTE The MTM engine cannot drain a scheduler if one or more nodes under the hierarchy is backpressured. The MTM
engine relies on one schedule event for each queue before draining can proceed.

MTM Input and Output Parameters

MTM Input Parameters

Table 17 MTM Input Parameters

Parameter Size Description

command 1B Identifies the packet type to unicast, expanded unicast, or multicast.

queueId 3B Queue ID number.
This 3-byte value specifies the MTM queue on which to place the unicast packet. This is an
index into a internal scheduling table that based on the MTM namespace.
All tasks sent with a queueId of 0xFFFFFF are dropped.

packetLenCorrection 1B Packet length correction.
A signed number for correcting the packet length for scheduling. The MTM computes the
packet length based on the task and then adds or subtracts the value of this field.
Default: 0 (no correction)
Range: –128 through 127 (negative values remove and positive values add)

sharedParamIndex 3B Shared parameter index.
You can define 32 bytes of parameters that are shared among a group of queues, and visible
to both Buffer Traffic Manager scripts and Traffic Shaper scripts.
This field specifies an index into a table that holds the shared parameters. When a task is
loaded in the Buffer Traffic Manager compute engine, the 32 bytes of shared parameters, if
used, are loaded into it. This index points to an entry in a namespace, and specifies which
shared parameter block is used.
Default: 0xFFFFFF (no shared parameters are loaded)

parameters 32B Task parameters available to the Buffer Traffic Manager engine and Traffic Shaper engine.
The Buffer Traffic Manager script can modify these parameters before they are passed to the
Traffic Shaper engine.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 93 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 5: Modular Traffic Manager (MTM) Engine
MTM Input and Output Parameters

MTM Output Parameters

Table 18 MTM Output Parameters

Setting the Final Output Target

The final output target is the output port destination for the packet. The Output ID value in the Traffic Shaper register
file is used as the finalOutputTarget value. This value replaces the first two bytes of the input task parameters when
they are passed to the next engine in the output parameters.

You can define the final output target for a packet in one of two ways.

 When you create a queue or scheduler, check the outputIdSelect box in its Namespace definition. The hardware
then assigns the queue or scheduler an Output ID, using the first two bytes of the 16 or 32 bytes of queue or
16 bytes of scheduler parameters, respectively. Before the script is run, the hardware writes these two bytes into
the Output ID.

 In the Traffic Shaper script, write the Output ID register file value to define the output target for the packet. You
can modify the value the hardware wrote, using any parameters available to the script you want, such as input
task parameters, or scheduling component parameters.

NOTE You cannot dynamically change the Output ID value of a queue or scheduler. However, you can use a script or
the RTE to change the Output ID value used by the queue or scheduler by changing the first two bytes of their
parameters.

If a packet’s path through the scheduling hierarchy does not include any queues or schedulers with the Output ID
value set and the script does not write a value, zero is used for the Output ID.

If the packet’s path includes a single queue or scheduler with the Output ID value set, the hardware writes the output
ID defined for that queue or scheduler.

If the packet’s path includes more than one queue or scheduler with the Output ID value set, the hardware writes the
output ID for the scheduling component lowest in the scheduling hierarchy with the Output ID value set. For example,
if both a queue and its scheduler have output IDs enabled, the queue’s Output ID is written by the hardware and the
scheduler’s is not.

For an example of using the outputIdSelect, you could configure level two schedulers to map to output ports. By
checking these scheduler’s outputIdSelect box, you can provide the value that sends all traffic for each of these
schedulers to a the specific output port they are scheduling for.

Alternately, you could have the Output ID assigned by an upstream engine, such as the MPP, in the input task
parameters, and use the Traffic Shaper script to write that parameter value in the Output ID field. In this case, it would
not matter if any queues or schedulers had the outputIdSelect checked, since the script would overwrite the
hardware-written value.

Parameter Size Description

finalOutputTarget 2B A 16-bit value written by a script, or from the first two bytes of the current_sch_params
block or the queue_params block of the register file.
To use the queue or scheduler parameters, set this value with the outputIdSelect attribute
in Namespaces > Namespace > MTMQueues > Queue or Namespaces >
MTMSchedulersLevel > Scheduler.
For example, the finalOutputTarget could be used to pick the packet’s physical Ethernet
port.

tsOutput 30B Up to 30 bytes of output data from the Buffer Traffic Manager or the Traffic Shaper engine.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 94 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 5: Modular Traffic Manager (MTM) Engine
Expander Input and Output Parameters

Unicast Processing

For unicast tasks, the upstream engine from the MTM engine knows what MTM queue the task needs to be placed in
and this is specified as part of the task parameters.

The MTM looks up the queue information and runs the Buffer Traffic Management script for this task. If as a result it
decides to accept the task, the task is placed at the tail of the corresponding MTM queue. Otherwise, the task and its
corresponding data are discarded. For every unicast task received, the MTM places at most one task in one of its task
receive queues.

Expander Input and Output Parameters

Expander Input Parameters

Table 19 Expander Input Parameters

Expander Output Parameters

Table 20 Expander Output Parameters

Expanded Unicast Processing

Expanded unicast tasks are tasks that describe unicast packets. The engine sequence which the expanded unicast
tasks are sent from terminates in the MTM, and a new task is generated and sent down a new engine sequence that
originates in the MTM. The Expander engine launches the new task.

Parameter Size Description

command 1B The packet traffic type:
 expandedUnicast
 multicast

flowIdMcastId 3B For expanded unicast packets, this value is the flow ID.
For multicast traffic, this value is the multicast group ID.

virtualPipeline 1B A Virtual Pipeline instance for the packet destination. The Virtual Pipeline instance must
exist under the Expander entry.
 This value determines which of the 128 Virtual Pipeline instances to use during task
generation for expanded unicast or multicast packets

exportParams 16B Input task parameter
Copied to Expander output parameters

Parameter Size Description

importParams 16B Contains a copy of the exportParams parameter, if provided in the incoming task.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 95 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 5: Modular Traffic Manager (MTM) Engine
MTM Exception Handling

The MTM engine maintains a 64-entry Virtual Pipeline instance table that contains the base address to a region in
memory that contains the data required for generating the new task. The incoming task has a flow ID which is an
index that points to an entry in this memory.

The MTM engine fetches the data for the new task from system memory and creates a new task, based on the table
data and the parameters defined for the Virtual Pipeline instance the packet is assigned to. If the input task provided
the 16 bytes of parameters, you can define which of these bytes you want to include in the output task. The format of
the resulting task is a regular unicast task. The task is handled just like a unicast task: buffer management followed by
either an enqueue into an MTM queue or drop.

Multicast Processing

Multicasting takes an incoming task and duplicates it into a number of expanded unicast tasks. The Expander
duplicates the multicast tasks sent to the MTM engine within the MTM.

Multicast tasks describe a set of unicast packets. The origin engine sequence that sends the multicast tasks terminates
with the MTM engine. A set of new tasks are generated and sent down new engine sequences that originate in the
MTM. The Expander engine launches the new tasks.

An expanded unicast input task points to a flow ID table entry that defines a new unicast task. Multicast input tasks
have a multicast group ID that points to a set of flow ID table entries, which defines all of the new unicast tasks
generated by the multicast task.

The MTM fetches the data for each new task from memory and creates a new task, based on the table data and the
parameters defined for the Virtual Pipeline instance to which the packet is assigned. If the input task provides the
32 bytes of parameters, they are also included in the task. The format of the resulting task is a regular unicast task. The
task is handled just like a unicast task: buffer management followed by either an enqueue into an MTM queue or
discard.

You can use Virtual Pipeline instance and the multicast group ID input parameters for multicast tasks to select a list of
Flow IDs for the outgoing unicast packets. The Virtual Pipeline instance is used as an index into the Multicast Flow
Table, to select a set of Flow IDs. The multicast ID indexes the Flow ID set structure to a sequence of expanded unicast
Flow IDs that are used when duplicating the packet. The received McastId task parameter points to a list of
FlowEntries in the Multicast Flow Table. Each FlowEntry points to an EngineSequence within an egress Virtual Pipeline
instance.

The multicast function ensures tasks sent to the same multicast group ID, are put into a given MTM queue in order.

MTM Exception Handling

The MTM engine handles these exceptions with the following actions.

 Tasks with a queue ID = 0xFFFFFF are dropped and the MTM increments a counter.
 Tasks sent to an illegal queue ID are dropped and the MTM increments a counter.
 All MTM queues can have a maximum size (1M packets) and any tasks that exceed this threshold the MTM drops.

An MTM counter records the number of tasks dropped because of queue overflow.
 The MTM engine ignores backpressure commands to non-existent scheduler points.
 Task errors received with the input task are passed on in the output task. The MTM does not generate and the

Expander does not generate any task errors.
 The MTM engine reports all other error types.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 96 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 5: Modular Traffic Manager (MTM) Engine
MTM Performance Monitoring Facilities

MTM Performance Monitoring Facilities

The MTM engine records statistics for the following performance elements.

 Number of input tasks received
 Number of tasks sent to illegal Queue IDs
 Number of packets (tasks) accepted by Buffer Management
 Number of packets (tasks) dropped by Buffer Management
 Number of tasks sent to another engine
 Number of tasks dropped by the Traffic Shaper
 Amount of memory used by the MTM engine
 Number of multicast packets dropped
 Total number of packets processed
 Total number of packets dropped
 Total number of packets dropped that have a Queue ID = 0xFFFFFF
 Number of packets (tasks) dropped in each of the input task queues
 The compute engine in the buffer manager is capable of maintaining any user-defined statistics in the Queue

Structure or in System Memory by using the Shared Parameter blocks.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 97 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 6: Timer Manager (TMGR) Engine
Overview

Chapter 6: Timer Manager (TMGR) Engine

This chapter describes the Time Manager (TMGR) engine that provides flexible timers and timing services to the Axxia
CPUs and accelerator engines.

Overview

The Timer Manager (TMGR) engine provides flexible options for tracking Axxia time and using timers that have
multiple time formats and various degrees of accuracy and precision. The TMGR engine provides timers and timing
services to the CPUs and the accelerator engines.

The Axxia Software Environment (ASE) refers to the Timer Manager as the Timer.

Features

The TMGR engine supports timers for the following purposes.

 Scheduling – Timer fires after a defined time.
 Time-out – Timer prompts for an action.
 Process Expiration – Timer indicates a dead or timed-out process.

The TMGR engine has the additional following features.

 The TMGR engine operations include create, delete, start, and stop.
 A task-based timer operation requires very little CPU overhead.
 Task-based timers fire by sending a task (with the ID and tag the requesting engine supplied at timer creation) to

the engine that requested the timer.
 Commands to the TMGR engine in a pipeline can be sent by a preceding engine using the task input parameters.
 The CPU subsystem can access the TMGR engine using the RTE APIs. In this case, the CPU does not use the timer

input and output task parameter formats.

The TMGR engine supports two input task queues, one high priority and one low priority. You can configure
arbitration, weights, and thresholds for these queues in the ASE.

The TMGR engine contains the Axxia Time Accumulator for maintaining the Axxia Time and for generating
timestamps. This accumulator can be used for frequency synchronization and time-of-day synchronization.
Additionally, the TMGR engine supports interrupt generation to the host processor based on Axxia Time values.

Time Representations

The Axxia architecture stores and manages Axxia Time in a consistent way across all engines. The Axxia architecture
uses the following representations of time.

 Axxia Common Time – A 64-bit accumulator that counts microseconds in a fixed-point representation, with the
eight least-significant bits representing fractional microseconds.

This accumulator is the native time that Axxia architecture uses. Each increment of Axxia Time represents
1/256 microseconds. Axxia Common Time therefore counts at an effective rate of 256 MHz.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 98 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 6: Timer Manager (TMGR) Engine
Formats

 Axxia Delta time – Specifies time relative to current time; for example, to start a timer at a specified interval from
the current time. Software uses this format most often, because software often applies delta values to timers and
to the scheduling of events.

 Axxia Absolute time – An absolute time using a smaller number of bits that gives up precision and range of time
(relative to current time). The Axxia architecture uses it internally; it is not visible to application software.

Formats

Axxia Time

The 64-bit Axxia Time representation uses 56 bits to represent microseconds and the least-significant 8 bits to
represent fractional microseconds. Each increment of Axxia Time represents 1/256 microseconds. Therefore, Axxia
Time counts at a rate of 256 MHz.

The ratio between the core clock and Axxia Time has roughly one part in 258 accuracy. This is helpful for cases where
the ratio is set at startup time and not changed. In this way, once the internal and external absolute time are
synchronized, the relationship between them will not change rapidly enough that resynchronization is required. The
relationship may still slowly change because the ratio between the core clock and Axxia Time is not 100 percent
accurate, but only slips one count every several months.

Axxia Delta Time

The Axxia Delta Time format specifies time relative to current time. The following situations use the Delta Time format.

 All timer requests made to the TMGR engine by other accelerator engines.
 FPL timer requests to the MPP hash engine timer structure.
 Traffic shaping within the MTM engine.

The following table describes how the device represents Axxia Delta Time.

Table 21 Axxia Delta Time Representation

Delta Time format can be used in shortened forms (16 and 24 bits) as needed by setting the LSBs of the Value field
to 0. A 16-bit delta time has bits [15:0] of Value as 0 and uses the Scale to put the resulting 8 bits in the right place.
Conversely a 24-bit delta time format has 16 bits of Value and the least-significant 8 bits are 0.

To represent a Delta Time as microseconds, set the upper byte to 0 and the lower 3 bytes specify the value in
microseconds. In other words, a value in microseconds can be directly used as a 32-bit value, as long as the value is
less than 224.

To represent a Delta Time in seconds, compute the number of seconds and then set the most significant bit.

Bits Field Description

31 Unit 0: Time specified in microseconds
1: Time specified in seconds.

30–24 Scale Seven-bit signed shift that is applied to the Value field.
If Unit=1 (seconds), then Scale field should be less than ten; otherwise,
the Value field is treated as a maximum delta time.

23–0 Value Delta

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 99 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 6: Timer Manager (TMGR) Engine
Accuracy and Precision for Axxia Time

The scaling factors either represent time in fixed-point seconds (by choosing seconds as the units and specifying a
negative shift), or to keep the width of the math reduced (for example, in an MTM traffic shaping script) by doing all
the scheduling interval math at a scaling which keeps the width of the math less regardless of shaping rate.

Axxia Compressed Absolute Time

The Axxia devices uses the Compressed Absolute Time format to store absolute times in timer implementations. This
representation gives up precision and range of time (relative to current time) and the Axxia architecture uses it
internally only so it is not visible to software.

The format of this time is represented in 18 bits. The 18 bits are a floating point representation of Absolute Time. There
is a 14-bit mantissa and a 4-bit exponent.

The Axxia Compressed Absolute Time stores all timestamps within 3 percent of the delta used when the new Absolute
Time is generated. Furthermore, the Absolute Time will be correctly interpreted within any bound that is no more than
32 times as long as the timer that was asked for. So if a Delta Time of 1 microseconds was specified, the Compressed
Delta Time will correctly map to Absolute Time within 320 microseconds. If this Compressed Delta Time was accessed
more than 320 microseconds after it was set, the representation may wrap and the stored Absolute Time would then
be interpreted incorrectly. The Axxia compressed format can express delta times up to approximately 38 hours. This
represents the maximum delay that can be supported by Axxia hardware timers, used for any purpose.

Accuracy and Precision for Axxia Time

The TMGR engine scales the internal core clock to microseconds using a configurable scaling factor. This scaling
mechanism supports high precision fractional scaling (roughly one part in 258). This scaling factor is the one place in
the system where the core clock frequency affects time. All other modules use time in the units of fixed point
microseconds.

The basic time unit used in the Axxia architecture is microseconds, but certain applications require more precision
than one microsecond. There are a few applications (for example, network time) where the protocol specifies time in
nanoseconds. To convert Axxia Time to nanoseconds, the Axxia Time can be multiplied by the factor 1000/256.

Software can adjust the ratio between the core clock and Axxia Time with a single 32-bit update. The update is used to
adjust the Axxia Time when receiving timing over packet (ToP) updates or when using an input reference clock. For
these cases, the full precision is not needed because Axxia Time is updated periodically (if only because the core clock
reference crystal may shift frequency over time).

Timers

The Axxia architecture implements two types of timers: non-cancellable and cancellable.

Non-cancellable Timers

Non-cancellable timers are unstoppable timers that run until completion.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 100 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 6: Timer Manager (TMGR) Engine
Using the TMGR Engine

Cancellable Timers

Cancellable timers are timers that can be changed (cancelled or time-out value reset) once they start. The Axxia
architecture implements cancellable timers internally using non-cancellable timers along with an additional data
structure that holds the updated time when a timer is supposed to expire.

An example of using cancellable timers involves analyzing performance metrics. When a timer is cancelled in the MPP
engine, a task (which is automatically deleted by built-in FPL software) still arrives at the MPP at the originally
scheduled time-out time. Application software accesses cancellable timers using an index which it supplies with the
timer when the timer is created or modified.

Using the TMGR Engine

The TMGR engine provides large-scale (millions of timers) timer services to the CPUs and accelerator engines, plus
supports timers for the following purposes.

 Scheduling – A timer that fires after a defined time.
 Time-out – A timer that prompts for an action.
 Process Expiration – A timer that indicates that a process is dead or has timed-out.

Characteristics

The TMGR engine has the following characteristics.

 The TMGR engine can be an intermediate engine in an engine sequence, or it can provide timing services directly
through the timer ring. The MPP, MTM, and PAB engines can access the TMGR engine directly via the timer ring.
Timer events arriving on the timer ring take precedence over those arriving on the task ring.

 It supports timer create, delete, start, and stop operations. Task-based timer operation requires very little CPU
overhead. Task-based timers fire by sending a task to the client accelerator engine. The task carries the ID and tag
that the client supplied when the timer was created. The task helps the client quickly determine what semantic
action it associated with the timer expiration.

 Efficient support for millions (large-scale) of simultaneously active timers.

Task Input Queue Configuration

The TMGR engine supports two input task queues for high and low priority tasks. You can configure queue arbitration,
weights, and thresholds similar to other engines.

Starting TMGR Processing

The TMGR engine starts when it receives a command over the dedicated timer ring or the task interface. The CPU
application software uses the ncp_timer_* RTE APIs to manage timers over the task interface. As long as there are
active timers its internal logic will continuously run to notify clients of timer expirations as they occur.

Task Input Parameters

The following table shows the TMGR engine task input parameters.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 101 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 6: Timer Manager (TMGR) Engine
Exception Handling

Table 22 TMGR Task Input Parameters

Because the CPU subsystem uses the ncp_timer_* RTE APIs to manipulate timers, the specifics of the timer input
and output task format are usually not relevant to application software. The exceptions are when the CPU is not using
the RTE APIs or when an engine accesses the TMGR engine by using the task interface rather than the timer ring
interface.

Task Output Parameters

Table 23 TMGR Task Output Parameters

Exception Handling

The TMGR engine supports the standard Axxia architecture mechanisms and methodology for reporting exceptions.
The TMGR engine checks for interface and internal errors and registers these error indications along with additional
error syndrome information in sticky status registers that can be read and cleared through the configuration interface.
System software can configure exception reporting hardware to determine which of the error indications will
generate interrupts.

Input Field Size Description

command 1B Timer operation. Bit 0 and 1 of the byte contain the encodings.

00 Update timer (Create timer if it does not exist.)

01 Delete timer

10 Stop timer

11 Reserved

deltaTimeout 4B Delta Timeout value in standard Delta Time format. This time-out value is
the delay from the time the task is serviced. This pseudo floating-point
number can be interpreted as follows:

Bits Field Description

31 Unit 0: Microseconds
1: Seconds

30–24 Scale 7-bit signed shift that is applied to
value

23–0 Value Delta (mantissa)

The 16 LSBs [15:0] of the deltaTimeout can also be overloaded to provide
an additional two bytes of flow ID. If this is used, adjust the Scale value so
the MSB is set to maximize the accuracy.

tag 8B Data passed back to the timer creator.

timerId 3B Timer identification value.

Output Field Size Description

firedDeltaLowBytes 2B Lower two bytes of the deltaTimeout parameter.
If these indicate flow ID, the input parameter should have the
value (mantissa) left justified and Scale adjusted accordingly so
the MSB of the mantissa is 1.

firedTag 8B Metadata associated with this timer during creation.

firedTimerId 3B Cancellable timer index.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 102 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 6: Timer Manager (TMGR) Engine
Performance Monitoring Facilities

These are common timer errors and how the TMGR engine handles the following exceptions.

 Timer set to expire within next time tick – Timer is treated as if it has expired in 0 time and the appropriate timer
expiration action takes place.

 Out of memory – For creating a non-cancellable timer, the timer request is returned with the Alloc_failed
indication set. If there is no memory for a cancellable timer, then the task is returned with the mem_alloc_failed
bit set. When this condition happens, a counter increments.

The TMGR engine does not pass on task errors in engine sequences. When the TMGR engine receives a task in an
engine sequence, it is being used as a cancellable timer. When the timer expires, the TMGR engine sends an output
task to the next engine in the sequence, without any parameters or flags from the input task. The output task serves as
a signal that the timer has expired. The typical use of the TMGR engine in an engine sequence has the requesting
engine that sends the task to the TMGR engine also serving as the engine that receives the output task from the
TMGR engine. For example, an engine sequence from the CPU to the TMGR engine and then back to the CPU
(CPU → TMGR → CPU) permits the CPU to use the TMGR engine as a cancellable timer.

External Timing Reference Interface

Axxia device has the following external timing reference interfaces.

 External Signal Definition
 Interface Configuration

Performance Monitoring Facilities

The TMGR engine can support 10+ million timer events per second using a 400-MHz Axxia device.

Timer Support

Although the Axxia architecture supports a small number of traditional hardware timers in the CPU subsystem (for
example, MPIC timers and PowerPC 476FP® timers), it uses a separate TMGR engine to provide timer services to the
CPU and to the other accelerator engines. The TMGR engine can provide millions of simultaneously active timers to
the CPUs and accelerator engines. Accelerator engines request a time and a corresponding duration from the TMGR
engine. When a timer expires, the TMGR engine notifies the requesting accelerator engine or CPU.

The TMGR engine provides timers to requesting accelerator engines using the following mechanisms.

 Timer Ring – A dedicated ring connected to the accelerator engines that use large numbers of timers, including
the MPP, the MTM, and the PAB.

 Task Ring – A task is sent to the TMGR engine on the task ring by an accelerator engine that requests a timer. The
CPUs often use this mechanism.

Timer Support for Resource Management

The MPP natively accesses the TMGR engine with the timer ring interface using its hash engine. A single hash engine
call can atomically allocate a namespace ID, start a timer, and associate both the namespace ID and the timer with a
hash key so that they can quickly be found later using that hash key.

For more information on using the MPP hash engine timer, refer to the Axxia Communication Processor Functional
Programming Language (FPL) Programming Guide.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 103 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 6: Timer Manager (TMGR) Engine
Support for External Clock Generation and Synchronization

Similarly, the PAB engine associates a timer with an assembly ID. Under task control, such timers can be watchdog
timers to recover memory for broken reassemblies or to transmit reassembled frames at a fixed interval.

Timer Support for Scheduling

The MTM accesses the TMGR engine using the timer ring interface and requests timers to implement its traffic
shaping functions. For example, when a queue or scheduler is ineligible for scheduling during a certain interval, the
MTM can set a timer that starts when the queue or scheduler is once again eligible for scheduling.

Timer Support for General CPU Processing

The CPU subsystem accesses the TMGR engine using the task interface. The TMGR engine delivers time-out events on
the specified task queue. When timer events are associated with an application software-specified flow, the specified
task queue can be an ordered task queue that enables a fast executive run-to-completion model to include timer
events. Because the CPU subsystem manipulates timers by sending and receiving tasks over NCA producer-consumer
queues in a cached CPU memory, this requires very little CPU overhead.

Support for External Clock Generation and Synchronization

The Axxia architecture provides an interface which is useful for clock generation and synchronization. The TIME_REF
and TIME_SYNC signals are multifunction pins which permit generating output reference signals, and using an input
reference.

Generating an Output Reference Clock from Axxia Time

Axxia devices can generate a reference clock output (for example, a T1 or E1 clock) at a tick rate that is derived from
Axxia Common Time when you configure the TIME_REF pin as an output. This feature might typically be used when
Axxia Common Time is synchronized dynamically from sources such as a timing over packet protocol. The ratio
between Axxia Common Time and the output reference clock would typically be set at startup time and would not be
expected to change dynamically. The Axxia architecture supports an output clock frequency range from less than
10 kHz up to 1/8 of the core clock speed (or up to 1/64 of the core clock speed for lowest jitter). Edges of the
generated output clock have 1/2 of an Axxia core clock tick of jitter.

Using an Input Reference Clock to Synchronize Axxia Time

Use the input reference clock feature when an external device performs global timing recovery. In this case, common
time should remain synchronized with the reference clock. This is done by configuring the TIME_REF pin as an input
and setting it to capture Axxia Time every configured number of TIME_REF edges. The CPU can then compare the
measurement of elapsed Axxia Time with the number of elapsed external clock ticks and adjust the Axxia Common
Time generation process to maintain frequency synchronization. The maximum recommended frequency for external
time input to an Axxia device is 1/8th of the Axxia core clock frequency (for example, 50 MHz for an Axxia device
running at a 400-MHz core clock).

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 104 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 6: Timer Manager (TMGR) Engine
Support for External Clock Generation and Synchronization

Mapping an Input Strobe to Synchronize Axxia Time with an External Device

When synchronizing the Absolute Time with an external device use the TIME_SYNC pin as an input to capture the
Axxia Common Time. For example, external logic could assert the TIME_SYNC strobe. Application software can
communicate with the external time reference to note what absolute external time the strobe was asserted. By
knowing the Absolute External Time and the Axxia Time that the signal was captured, application software can then
apply the time difference to future time computations. Since the frequencies are exactly synchronized, this delta will
not change.

Using an Output Strobe to Synchronize Axxia Time with an External Device

This feature uses the TIME_SYNC pin as an output to capture the Axxia Time when the pin is asserted. You can
compare the Absolute External Time when the TIME_SYNC pin was asserted with the time captured internally when
the pin was asserted. In this way, you can know the delta between the Axxia Time and the External Absolute Time.
Again, because the frequencies between the Axxia Time and the external time are synchronized, this delta does not
change.

Support of Timing over Packet (ToP) Protocols

When using a packet network to convey timing information, a server sends timing information encapsulated into
packets to one or more clients. Based on the time the packets are received and their contents, clients can recover the
frequency or absolute time at the server. Two well known protocols which Axxia supports for performing this function
are NTP and IEEE 1588.

In general, Axxia applications partition timing over packet functionality between the host processor(s) and the
acceleration subsystem. The acceleration subsystem, which can run either the LSI Axxia Development Kit (ADK)
software, customer software, or some combination, performs the following operations.

 Receives incoming packets.
 Identifies (using classification) which packets are related to timing over packet protocols.
 Delivers these packets (along with the common time that they arrived) with appropriate QoS treatment by the

proper NCA queue to customer application software running on the host processor(s).

Customer application software acts on the received packets, performing the following operations.

 Scales back and forth between Axxia Common Time and the time format used by the timing over packet protocol
(for example, TAI for IEEE 1588).

 Sends response or follow-up messages.
 Retrieves information about the common time at which previous packets were sent out.
 Serves as a client, occasionally adjusting the tick rate at which common time advances to better match the

frequency at which the time server’s clock is advancing (using the appropriate RTE commands).

Using EIOA Engines to Capture Network Time from Packets

The hardware timestamping function of the EIOA engines can be configured on a per Virtual Pipeline instance basis
for ingress and egress packets. The hardware timestamping process uses the current Axxia Time value, which is carried
as metadata along with the received packet. The metadata timestamp value is made available to downstream engines
in the Virtual Pipeline instance as needed.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 105 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 6: Timer Manager (TMGR) Engine
Support for External Clock Generation and Synchronization

Similarly, EIOA engines can capture the Axxia Time when a packet of interest (for example, a ToP-related packet) is sent
out. There are three 64 x 64 timestamp tables in the following EIOA engines.

 One for EIOA0
 One for EIOA1 (For the XGMAC and the 4 SGMIIs)

To specify that a particular packet or task being sent from the EIOA should trigger a timestamp capture, the
application software provides a 1-byte timestampCapture parameter associated with the packet or task. This
parameter enables the capture and specifies a -bit table index where the associated captured time entry is held.
Application software can then use the ncp_eioa_tx_ts_get() function to retrieve the specified stored
timestamp from the EIOA. The application software can use this information (perhaps converted to a different time
base) to generate subsequent timing over packet control messages.

A basic timing over packet algorithm performs the following functions.

 Captures the Axxia arrival time of packets at the EIOA.
 Compares delta times contained in subsequent ToP packets with the delta time of measured arrival times.
 Uses a low-pass filter algorithm (that you provide or third-party application software) to adjust the frequency of

Axxia Time generation as needed to track network time frequency.

The above algorithm can be enhanced to correlate absolute time by performing the following actions.

 Using both ingress and egress hardware timestamps of ToP packets to accurately measure round trip ToP delays
 Using the round-trip delay to compute the one-way delay used to modify the Axxia Time value to yield absolute

network time
 Applying the calculated delta time to future time computations

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 106 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 7: Stream Editor (SED) Engine
Overview

Chapter 7: Stream Editor (SED) Engine

The Stream Editor (SED) engine is an efficient and flexible editor for fixed-function and general-purpose packet
editing. For clarity, a packet is defined as a complete PDU, and a fragment is a segment of a PDU.

Overview

The Stream Editor (SED) engine can block-edit packets and is an intermediate accelerator engine in a Virtual Pipeline
instance sequence. The SED engine can edit a header, payload, and trailer of a packet, in 128-byte blocks using a Very
Large Instruction Word (VLIW) compute engine. The SED engine operates on a 256-byte register file that contains up
to 128 bytes of packet data and 128 bytes of parameters.

Features

The SED engine performs the following packet-editing functions.

 Adds or deletes data to the packet head or tail.
 Modifies data anywhere in a packet by using a script (C-language subset), to calculate TTL, updates checksums,

and so on.
 Fragments or segments a single packet into multiple packets.
 Performs CRC calculations and timestamp packets.
 Discards packets according to script conditions.

You can use the SED engine to edit packet data with the following techniques.

 Edit only the first block (128 bytes) of the packet. With this approach, you typically edit common packet headers
that are less than 128 bytes.

 Edit only the first two blocks (256 bytes) of the packet. You typically use this technique when additional header
information (exceeding 128 bytes) needs to be added at the start of the packet (prepended).

 Edit every block of the packet.

The SED can modify a packet trailer, even when it is operating in the first one-block or two-block mode. For many
applications, the SED engine efficiently modifies, updates, or adds header information.

For example, the SED engine can perform the following typical operations.

 Prepend layer 2 header.
 Insert one or more VLAN tags.
 Perform Network Address (Port) Translation.
 Swap in a new header (layer 2, layer 3, and layer 4).
 Decrement TTL.
 Update header checksums.
 Perform IPv4 or IPv6 fragmentation.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 107 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 7: Stream Editor (SED) Engine
SED Architecture

SED Architecture

The SED architecture consists of the following two components.

 SED Core Logic – Receives the task, loads the compute engine, unloads the compute engine, and sends the task
to the next engine in the sequence.

 SED Compute Engine – Runs a C-NP language script to perform programmable packet editing.

These two SED components operate as a three-stage pipeline processor that perform the following functions.

 Receives the task and loads the Compute Engine register file with data and parameters.
 Runs the selected Compute Engine script. The script modifies the data in the register file, and sets predicates for

any unload processing.
 Unloads the results of script processing from the register file and sends the task to the next engine in the engine

sequence.

Figure 23 SED Block Diagram

SED Task Receive Queue Configuration

The SED has two task receive queues, for high and low priority. Use the task priority to map tasks to low and high
priority packet queues. The SED does not require or support ordered task queues, since the SED must process all
blocks or fragments of the packet in order.

The SED Engine receives one task per packet. This means internal task packet data plus all packet pointers/data sizes
are guaranteed to contain one and only one packet. The maximum packet in the system is defined as 64 KB. For
completeness, when the SED Engine fragments and outputs multiple tasks, these are considered as standalone
packets contained within those tasks.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 108 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 7: Stream Editor (SED) Engine
SED Functional Description

SED Functional Description

The SED edits packets through parameter- and script-based actions. For clarity, a packet is defined as a complete PDU,
and a fragment is a segment of a PDU.

SED Capabilities

The SED is a block editor that allows programmable editing of up to 128 bytes of packet data at a time, loaded into its
Compute Engine register file with processing parameters. It can be used to edit:

 The first block of a packet only
 The first and second block of a packet only
 Every block of a packet

In any of these three modes, the SED can add padding and trailer bytes to the end of the packet. The script defines the
padding data and length, and trailer information as output parameters. The script signals for that information to be
written to the end of the packet by setting a predicate flag in the register file of the last packet block processed,
whether that is the first, second, or last block of the packet.

SED editing options include:

 Adding up to 255 bytes to the head of the packet, or deleting up to 384 bytes from the head of the packet prior to
script processing.

 Deleting up to 765 bytes from the end of a packet prior to script processing
 Adding up to 255 bytes of padding and trailer information to the packet
 Performing modifications to the packet data via the Compute Engine script.
 Segmenting a packet into multiple fragments that are transmitted as independent tasks.

In addition to editing the packet, the SED can send up to 32 bytes of parameters for use by downstream engines.

SED Packet Editing Parameters

The SED engine modifies packet data in 128-byte blocks, using the following parameter types.

 Preprocessing – SED core logic uses these parameters to modify the block before a SED Compute Engine script
executes. These parameters define what is loaded into the compute engine.

 Compute Engine processing – SED Compute Engine uses these parameters to modify the block.

SED Parameter Processing

SED processing begins when a packet editing task arrives. The core logic first determines the processing parameters
for the packet, merging the stored parameters with the task parameters to identify the processing options for the
packet, which include:

 The packet data to be loaded. The parameters defines offsets, called the start and end delta. You can define up to
three start and three end delta values using task parameters, parm1 and parm2. When more than one start or end
delta is defined, they are added together, respectively, to determine the number of bytes added or deleted from
the head or tail of the packet. For example, if three start deltas are defined, 12, 20, and 10, the start delta used is
42 bytes.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 109 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 7: Stream Editor (SED) Engine
SED Input and Output Parameters

— Use the start delta to add bytes to, or delete bytes from, the head of the packet. The start delta value is a
signed number from -128 to 127, with negative numbers defining the number of bytes deleted, and the
positive numbers defining the number of bytes added to the head of the packet. You can use up to three start
deltas, allowing up to 384 bytes to be deleted from the head of the packet, and up to the hardware maximum
of 255 bytes to be added to the head of the packet using multiple summed start deltas.

Additionally, you can define up to 240 bytes of prepend data in namespace table parameters. If prepend data
is defined in the parameters, that data is loaded into the register file ahead of the packet data. Prepend data is
inserted before start delta bytes. Up to 255 bytes of data can be prepended to the packet. If the prepend data
length, up to 240 bytes, plus the start delta length, up to 255 bytes, exceeds 255 bytes, then the start delta is
reduced to fit the 255 byte limit.

— Use the end delta parameter to define the number of bytes to be deleted from the end of the packet. The end
delta cannot be used to add bytes to the end of the packet. The value of the end delta parameter has a
maximum of 255. To define a larger end delta, you can define one or two additional namespace end delta
parameter values that are added to the task end delta to achieve the 765-byte maximum.

 IP fragmentation information, including fragmentation header length, maximum transfer unit size, and minimum
fragment length.

 Name of the compute engine script to run. The SED supports up to 128 scripts.
 32 bytes of task parameters for script processing. These parameters, also called task inline parameters, arrive with

the task and are loaded when the first block is processed, and are stored in the register file and used by the
compute engine script for all blocks. This block can include trailer data and padding bytes, if needed, and
otherwise can be defined to meet application requirements. In the register file, these bytes start at byte 128.

 Pointers to two optional parameter sets in namespace table memory, Parm1 and Parm2. Optionally, these sets
can include:
— An additional set of the task parameters, with a flag byte indicating which values to use.
— 16 or 32 bytes of parameters, loaded for each block processed. In the register file, these bytes start at

byte 160.
— Up to 240 bytes of data to be prepended to the packet.

SED Input and Output Parameters

SED Input Parameters

Table 24 SED Engine Input Parameters

Parameter Size Description

param1Ptr 3B Pointer (parm1) to an entry in a SED namespace.

param2Ptr 3B Pointer (parm2) to an entry in a SED namespace.

startDelta 1B The number of bytes to add to or delete from the start of the PDU.
Possible values are –128 to +127. Negative values remove and positive values add.

endDelta 1B The number of bytes to delete from the end of the PDU.
Range: 0 through 255

script 1B The SED script. Select a script defined under the SED > ComputeEngine element.

fragmentHeaderLen 1B The number of bytes of the packet to repeat for each fragment.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 110 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 7: Stream Editor (SED) Engine
SED Parameter Structure

SED Output Parameters

The SED outputs a single 32-byte parameter. These 32 bytes are placed in the task_param_block parameter in the SED
register file.

For more information about SED Output Parameters, refer to the Axxia Communication Processor Compute Engine
Programming Guide.

SED Parameter Structure

The SED provides great flexibility in how you define and use its packet processing parameters.

Parameter Data Structure

You define SED parameters in the following sections.

 Define standard input task parameters in the engine sequence configuration, supplied from the following
sources.
— Inline task parameters – Outputs from upstream engines in the pipeline or flow table entries.
— Virtual pipeline merge template task parameters – Static values used for all Virtual Pipeline instance traffic

and defined using the Axxia Software Environment (ASE).
 Additional parameters defined in one or two SED namespace entries: Parm1 and Parm2. The parameter index

(pointer) for the namespace entries is provided by the task parameters.

The task parameters used in processing can be overwritten or added to parameters defined in the Parm1 or Parm2
SED namespace entries.

Parm1 and Parm2 Namespace Table Parameters

These tables are optional; setting the parameter index for Parm1 (param1Ptr) or Parm2 (param2Ptr) to all ones turns
off the index pointer.

These tables can contain the following information.

 Up to 32 bytes of additional script parameters
 Replacements or modifications to the standard task parameters
 Up to 240 bytes of data to prepend to the packet

fragmentationSize 2B The number of bytes in each fragment.

minFragmentLen 2B The maximum length of a packet that is not fragmented.

inlineData 32B Task parameters.
Use these parameters for application-specific tasks, such as trailer information or pad data.

Parameter Size Description

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 111 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 7: Stream Editor (SED) Engine
SED Parameter Structure

Table 25 Engine Table Types and Defined Entries

Parm1 and Parm2 can be the same or different types.

The maximum additional script parameters available from Parm1 and Parm2 namespace tables is 32 bytes, and with
the Task script parameters, make a maximum 64 bytes of script parameters.

If both Parm1 and Parm2 define additional script parameters, either set can be selected, or they can be concatenated
or merged to create the 32 bytes that are used.

Indirect Mode Characteristics

The Indirect Mode has the following characteristics.

 Standard task parameters – Can be enabled in the indirect parameters using the flag byte. This byte permits you
to select specific parameters to use from the indirect table entry.

 Table Entry Memory – Table entries must be 256 bytes or less, to fit a cache line, so that when using indirect table
types, the task parameters and flag byte take up 16 bytes, resulting in the maximum of 240 prepend bytes.

 Prepend and additional 32-bytes of Script Parameters have the following characteristics.
— If prepend data is not enabled, the table entry may still provide 16 to 32 bytes of additional script parameters,

if the size of the table provides the space.
— If the length of the prepend data is less than 240 bytes, the SED can read up to 32 bytes from the end of

256-byte table row as additional script parameters. The SED starts at the next 16-byte border after the
prepend data to read up to 32 bytes, based on the number of bytes available.

— If both Parm1 and Parm2 define prepend data, Parm1 prepend data is used.

Engine Table Type Table Entries Can Define

Direct Mode 16 or 32 bytes of additional script parameters

Indirect Mode A set of task parameters, including start and end delta, script ID, and
fragmentation parameters.

Prepend data

Additional 32 bytes of script parameters

A flag byte that indicates which table entry fields are used

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 112 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 7: Stream Editor (SED) Engine
SED Parameter Structure

Table 26 SED Indirect Parameter Table Structure

Additional notes on Indirect parameter tables are listed here.

 Indirect Blocks always start at a 16B boundary.
 Large Indirect Blocks should always start at a 256B Cache line boundary to avoid inefficiencies. Spanning cache

lines should always be discouraged.
 PrePend Data always starts at a 16B boundary.
 PrePend is a byte length and PrePend data comes first in Parameter Data Block.
 If PrePend used, then PrePend Pad is used to get to a 16B boundary.
 SED Parm Data, if present, always starts at a 16B boundary.

Field Bytes Description

Flag Byte 1 Selects the valid fields for the table:
Bit 7: Start Delta Byte is valid
Bit 6: End Delta Byte is valid
Bit 5: Script ID Byte is valid
Bit 4: Fragment Header Length is valid
Bit 3: Frag Size is valid
Bit 2: Reserved (Unused)
Bit 1: Min Frag is valid
Bit 0: PrePend Data Length is valid

startDelta 1 The number of bytes to add to or delete from the start of the PDU.
Possible values are -128 to +127. Negative values remove and positive values
add.

endDelta 1 The number of bytes to delete from the end of the PDU.
Range: 0 through 255

scriptId 1 Script ID number.

fragmentHeaderLen 1 The number of bytes of the packet to repeat for each fragment.

fragmentationSize 2 The number of bytes in each fragment.

minFragmentLen 2 The maximum length of a packet that will not be fragmented.

Prepend Data Length 1 Parameter data block prepend: 1 byte value specifying how many bytes of the
parameter data block should be prepended to the packet instead of being given
to the SED script.
Currently limited to 255 bytes maximum. (1 to 255 range; 0 means no prepend
data)

Reserved Bytes 6 Pad to 16B boundary

Parameter Data Block n PrePend Bytes (0 to 255B) + SED Parm data (0 to 32B)
Max Case: 1 Flag Byte + 9B Parms + 6B Pad + 255B + 32B = 303B – 256B = 47 B
Overage
Therefore, PrePend size or SED Parm size or both must account for the 47 byte
reduction to a Cache Line Size of 256 Bytes.

Prepend Pad m REMAINDER Base 16 (nB) = Pad to 16B boundary. That is, MOD 16 (nB + mB) = 0
where nB = number of bytes in the parameter data block, and mB = the number
of bytes in the prepend pad.

SED Parm Data p 0 to 32 Bytes of Parm Data (starts at 16B boundary)
SED Engine determines if parameters exists by computing and comparing the
“fetched” block size and sum of bytes thru PrePend Pad.

Total 256

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 113 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 7: Stream Editor (SED) Engine
SED Parameter Structure

Merging Script Parameters

Merge the direct, indirect, and standard task parameters in the following ways.

 If start delta or end delta parameters are enabled in an indirect table entry, their values are added to the
respective Task parameter start or end delta values. If both Parm1 and Parm2 provide start or end delta values, all
three values are added.

 If script ID or Fragmentation parameters are enabled in an indirect table entry, their values replace the Task
parameter values. If both Parm1 and Parm2 provide values, Parm1 values are used.

Both Parm1 and Parm2 table entries can provide up to 32 bytes of additional script parameters. Even if both Parm1
and Parm2 are used, only 32 bytes total can be loaded from the two tables, so either Parm1 or Parm2 parameters must
be selected, or a combination of bytes can be used as bytes from both sources are merged. The Parm1 parameters are
loaded first, then merged with the Parm2 parameters to determine the final 32-byte set.

You define how the two sets of 32-byte parameters merge by setting a byte offset, the Parm2 Offset, a configurable
parameter for each script. The Parm2 Offset, a value from 0 to 31, defines where in the 32 byte parameter set that the
Parm2 parameters begin.

For example, as shown in the following figure, with a Parm2 offset of 7, bytes 0-6 are the first 7 bytes of Parm1, and
Parm2 bytes start at byte 7.

Figure 24 Parm1 and Parm2 32-byte Parameter Merge Example

Setting the Parm2 Offset to 32 selects the Parm1 parameters; setting it to zero selects the Parm2 parameters.

Using Parm1 and Parm2 Parameter Combinations

When Parm1 and Parm2 are both used in the Indirect mode, the start delta and end delta values from both table
entries can be enabled, which causes their values to be added to the standard task parameter values for both start and
end delta to determine the final value used for processing.

For example, use this feature to implement different headers or trailers for Parm1 and Parm2, to create parameter sets
that use multiple combinations of Parm1 and Parm2 parameters without the need to create a unique parameter set
for each.

For example, you could define a Layer 2 header set in the Parm1 table, and a Layer 3 header set in Parm2. Using this
configuration, you could then use any Layer 2 header with any Layer 3 header, since the length for each header is in
the Parm1 and Parm2 table start delta values.

Using SED Parameters

The SED parameters provide flexibility to maximize memory use and to provide for easier reuse for multiple
applications.

Depending on application requirements, you can choose to use all or a subset of the parameter options. Here are
some sample application requirements and how they can met using the SED parameters.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 114 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 7: Stream Editor (SED) Engine
Exception Handling

 Editing a packet using 32 bytes or less of parameters, without requiring additional prepend data.

The standard task parameters, that include 32 bytes of parameters are all that is necessary, without the need for
using the Parm1 or Parm2 namespace tables for parameters.

 Editing a packet using 64 bytes or less of parameters, without requiring additional prepend data.

The standard task parameters that include 32 bytes of parameters can be used with Parm1 in the direct mode to
provide an additional 32 bytes of parameters for a total of 64 bytes.

 Editing a packet requiring 64 bytes or less of parameters, and up to 202 bytes of additional prepend data.

The standard task parameters, that include 32 bytes of parameters, and Parm1 in Indirect mode, with a maximum
of 202 prepend bytes defined, leaving the maximum of 32 additional parameter bytes available in the table entry.

 Editing a packet requiring 32 bytes or less of parameters, and up to 240 bytes of additional prepend data.

The standard task parameters, that include 32 bytes of parameters, and Parm1 in Indirect mode, with a maximum
of 240 prepend bytes defined, leaving the maximum of 32 additional parameter bytes available in the table entry.

 Editing a packet requiring 64 bytes or less of parameters, and up to 240 bytes of additional prepend data.

The standard task parameters, that include 32 bytes of parameters, and Parm1 in Indirect mode, with a maximum
of 240 prepend bytes defined, and Parm2 in Direct mode, providing 32 bytes of additional parameters.

Exception Handling

Any received taskError is passed on using the outgoing task. The SED does not generate taskErrors.

When the SED receives a task with erroneous packet editing parameters, such as start and end deltas that delete all of
the packet, a PDU of zero bytes is sent forward in the output task. However, if PrePend data is specified, it is sent
regardless; even if the PDU is completely deleted. The same behavior applies to Pad or Trailer, if specified; the Pad or
Trailer bytes are sent at the end of the packet stream.

The SED supports the standard SMON capabilities in the Axxia architecture.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 115 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 8: Security Protocol Processor (SPP) Engine
Overview

Chapter 8: Security Protocol Processor (SPP) Engine

The Security Protocol Processor (SPP) engine provides decryption and encryption, packet integrity, and anti-replay
protection.

Overview

The Security Protocol Processor (SPP) is a multithreaded, pipelined, accelerator engine that provides features needed
for security protocol processing, including authentication, encryption, decryption, and editing. The SPP performs
encryption and integrity (hashing) checks for packets and performs the necessary security processing. The SPP always
functions as an intermediate engine in a pipeline sequence.

The SPP engine provides hardware acceleration offload to both the data and control path. For example, when a host
must set up a secure connection, the SPP encrypts and decrypts all traffic in the hardware engine for this secure
connection. After the SPP sets up the secure connection, it maintains all context data internally to allow complete
hardware operation of future data traffic for this connection.

The SPP engine performs the following operations.

 Accelerates the decryption and encryption of packets for many standard security protocols.
 Provides the following protocol processing security services.

— Packet integrity authentication.
— Anti-replay protection.
— Programmable security protocol processing that includes packet modifications and error checking.

For more information on the SPP, refer to the Axxia Communication Processor Security Protocol Processor (SPP)
Programming Guide.

Supported Protocols and Features

While the SPP engine is programmable, LSI provides all firmware for it. The SPP engine has the following features.

 IPv4 and IPv6 protocol processing.
 Pseudo-random Number Generator (PRNG) to generate initialization values.
 Support for a packet input length of 0xFFFF to indicate the usage of the entire packet.
 Programmable packet processing for the following items.

— Security header (for example ESP, AH, and TLS) insertion and removal.
— Addition and removal of padding.
— Next packet header retrieval.
— Extended sequence numbers.
— MAC (ICV) truncation, appending, and verification.
— Insertion, replacement, or removal of packet data directly or indirectly related to security processing.
— Anti-replay checking for window sizes up to 1024 packets.
— Processing packets that are not byte aligned in memory.
— Hash result retrieval after decryption.
— IP header checksum and length modification.
— Sequence number, hash result, and padding verification.
— Security context word (record) updates and modification.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 116 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 8: Security Protocol Processor (SPP) Engine
Configuring Secure Connections

The SPP engine supports the following encryption and combined mode algorithms.

 DES (ECB, CBC).
 3DES (ECB, CBC).
 AES-128 (ECB, CBC, CTR, GCM, CM, CCM).
 AES-192 (ECB, CBC, CTR, CM).
 AES-256 (ECB, CBC, CTR, GCM, CM, CCM).
 ARC4-40, 128, using stateless (RFC 2617) and stateful (RFC 4559) mode.
 Kasumi f8.
 SNOW 3G f8.
 ZUC f8.
 A5/4, A5/3, and A5/1.

The SPP engine supports the following hashing algorithms.

 MD5 (and SSL MAC and HMAC).
 SHA-1 (and SSL MAC and HMAC).
 SHA-224, SHA-256, SHA-384, or SHA-512 (and HMAC).
 AES-GMAC (used with AES-GCM and stand-alone).
 AES-CMAC.
 Kasumi f9.
 SNOW 3G f9.
 ZUC f9.

The SPP supports the following protocols.

 IPsec, Encapsulating Security payload (ESP), and Authentication Header (AH)
 TLS
 SSL
 DTLS
 3GPP
 SRTP
 MACsec
 IEEE 802.11 WiFi
 IEEE 802.16e WiMAX

Configuring Secure Connections

The host processor is responsible for negotiating the setup of secure connections. To assist this process, there are two
hardware-based accelerators that are not part of the SPP. These blocks are available to the host processors via the
peripheral bus

 True Random Number Generator (TRNG)
— Can be used for initial vector (IV) generation for key management protocols such as the Internet Key

Exchange (IKE) protocol.
— Compliant with the NIST 800-90 standard.

 Public Key Accelerator
— Offloads RSA, Diffie-Hellman, DSA and ECC functions from host processor.
— Supports up to 4096-bit exponents.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 117 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 8: Security Protocol Processor (SPP) Engine
SPP Architecture

The following figure shows the interface between the host processor (CPUs) and the TRNG and PKA.

Figure 25 Interface between Host and PKA and TRNG

 For more information about the PKA and the TRNG, refer to the Public Key Accelerator chapter and the True Random
Number Generator chapter in the Axxia AXX2500 Family of Communication Processors Multicore Reference Manual.

SPP Architecture

The SPP is a multithreaded, pipelined engine consisting of the Multiprotocol engine (MPE) and the Virtual Pipeline
Interface. The MPE is the main processing core of the SPP and controls security processing. The Multiprotocol engine
has the following components.

 Input Task Manager (ITM) – Receives the task, retrieves the security context information, and starts the pipelined
processing.

 SPP Micro-Engines – Microcoded (by LSI) customized security processors which perform all security protocol
processing and packet formatting.

 PRNG – Creates random Initialization Vectors (IVs) for insertion into protocol packets.
 Crypto Service Engine (CSE) – A transaction driven cryptography engine that performs all cryptographic and

hashing operations. Controlled by the SPP Micro-Engines.
 Security Context L1 Cache – Holds up to 16 security context parameter sets for security processing.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 118 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 8: Security Protocol Processor (SPP) Engine
Virtual Pipeline Model

Figure 26 SPP Block Diagram

Virtual Pipeline Model

The SPP is an intermediate engine. The SPP typically receives tasks from the following accelerator engines.

 MPP – Packets may be first processed by the MPP for classification or other processing such as header
compression or decompression and then sent to the SPP for security processing.

 PAB – Packets can be reassembled or may be built by merging header and data by the PAB (RLC AM mode) and
sent to the SPP for security processing.

 SED – Packet headers may need to be added or packet segmented or fragmented in the SED prior to security
processing.

 CPU complex – A CPU can send a packet to the SPP for processing.

The SPP typically sends tasks to the following accelerator engines.

 MPP – After security processing, it is necessary to save statistics for erroneous packets and it may be necessary to
reclassify the packet, particularly in the decryption case, or perform other processing such as header
decompression or header additions.

 PAB – The PAB can be a retransmission buffer (RLC AM mode) to store and copy the packet after security
processing.

 SED – Packets may need editing or additional L2 headers added or to be segmented or fragmented after security
processing.

 PIC – Packets may require recalculations of CRC and checksums before being transmitted (for example, UDP
checksum for SRTP).

 CPU complex – Packets are sent to the CPU after security processing because the CPU originally sent the packet,
or some exception processing is required.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 119 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 8: Security Protocol Processor (SPP) Engine
SPP Virtual Pipeline Operation

The SPP outputs status indicating errors such as authentication failure, and downstream engines can check this status
and take appropriate action such as discarding packets that failed authentication.

NOTE The SPP engine does not receive backpressure messages from downstream engines (ones that receive SPP
output tasks) or process the messages.

SPP Virtual Pipeline Operation

The SPP processes packets using up to four threads, depending on the device, in a multi-stage pipeline with the
following steps.

1. When a task arrives at the Virtual Pipeline interface block, the SPP engine enqueues the task into one of eight task
queues.

2. When a task is at the head of its queue, it is dequeued and sent to the Multiprotocol Engine (MPE). The task
includes a pointer to the packet security context. The SPP requests that the security context for the packet be
loaded into the L1 cache. The SPP can process up to 16 packets simultaneously.

3. The Input Task Manager (ITM) indicates to the SPP Micro-Engines that the security context cache entry is available
and protocol processing starts.

4. The SPP Micro-Engines perform the following protocol processing.

— Initial value generation, insertion, and removal
— Packet padding and depadding
— Security header insertion, modification, verification, and removal
— Sequence number generation and estimation
— Anti-replay checking
— IP header updates (for IPsec) and error checking

5. The SPP Micro-Engines also handle all formatting of data after receiving a packet from the Crypto Service
Engine (CSE) for encryption services.

6. The CSE performs necessary ciphering and hashing operations. It can perform multiple operations on a single
packet if needed.

7. The security context data structure in the L1 cache is updated with any new values and written back to system
memory if no other packet for that security context is currently active in the SPP.

8. The processed packet is written to memory, or to the task if the packet length is less than 96 bytes.

9. The task is forwarded to the next engine in the engine sequence.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 120 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 9: Deep Packet Inspection (DPI) Engine
Overview

Chapter 9: Deep Packet Inspection (DPI) Engine

This chapter defines the Deep Packet Inspection (DPI) engine that performs pattern matching on packet data.

Overview

The Deep Packet Inspection (DPI) engine uses regular expression (RegEx) comparison that performs pattern matching
on packet data. It receives the packets from other accelerator engines or CPUs in the pipeline.

Use the DPI engine to scan data for specific preprogrammed patterns and to return results when it finds the patterns.
You can scan packet data for the purpose of application recognition, intrusion detection and prevention, virus
detection, SPAM filtering, or, if required by an application, accelerated pattern matching.

DPI Features

The DPI engine supports many packet inspection capabilities, including the following features.

 Support for up to 3 Gb/s throughput
 Ability to perform scans across multiple packets
 Support for industry-standard regular expressions
 Support for character class, quantifiers, anchors, subexpressions, and alternation
 Support for up to one million concurrent flows
 Simultaneous evaluation of up to one million rules

Internal Architecture

You must configure the DPI engine, which consists of three processing subengines, before processing any tasks. After
the DPI engine is configured, the subengines can receive tasks to scan using a predefined ruleset loaded in system
memory.

The following figure shows how the DPI engine fits in with the overall system architecture.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 121 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 9: Deep Packet Inspection (DPI) Engine
Internal Architecture

Figure 27 DPI Engine Overview

Task-specific control information is passed to the DPI engine through the task parameters. The input task parameters
include control information such as whether the packet will be scanned in cross-packet or non-cross-packet mode,
and the position of the packet in a flow (first, intermediate, or last).

Cross-packet scanning is required when a scan consists of the payload inside packets of the same flow. For example, a
large file transfer may include many packets, and the file itself needs to be scanned. You can achieve this with
cross-packet inspection. Packets from the same stream are identified by earlier engines or the CPU, and a unique
identifier is assigned in the input task parameters. A unique identifier is required because packets from different
streams can be arbitrarily interleaved and passed to the DPI engine. Any packet with that same identifier is scanned in
cross-packet mode until the engine is instructed that the last packet has arrived for this stream. Along with the unique
identifier, there are input task parameters for first, intermediate, and last packet in a cross packet inspection. These
flags help the engines identify when a cross-packet state (context) must be created, updated or deleted as an
individual packet is scanned.

Packets that are scanned in non-cross-packet mode do not need to store any context, and they ignore input task
parameters related to cross-packet inspections. Packets scanned in non-cross-packet inspection mode can be
scanned for Intrusion Detection and Intrusion Prevention System applications, application recognition, or when the
layer 7 payload does not require more than one packet to be transported.

The input task parameters determine the following processing actions.

 The DPI output format, whether the DPI output is token only, or token with packet.
 The number of input packet bytes to skip before processing.

The output token indicates which rule matches the scanned data. Depending on the output parameters, it can also
have two variables that describe the position of the match in the scanned data, the beginning and end of the match.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 122 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 9: Deep Packet Inspection (DPI) Engine
DPI Task Input Queue Configuration

For cross-packet scans, the DPI engine stores context data in memory. Context data is flow-specific packet data that is
stored in memory to be rescanned along with the next packet in the flow. There are two types of context data buffers:

 Small context records (SCRs), which can be configured to 32, 64 (default), 128, or 256 bytes at initialization time
 Large context blocks (LCBs), which can be configured to 512 bytes, 1 KB, 2 KB, or 4 KB (default)

Initially, an SCR is automatically allocated. When the amount of context data exceeds the size that can be stored in an
SCR, the DPI engine automatically allocates an LCB. The DPI engine allocates LCBs when needed and de-allocates
them when the last packet in the flow has been processed.

Compiling Rulesets to Configure the DPI

You can compile rulesets with a stand-alone compiler or with the compilation APIs. After the ruleset compilation, use
the load ruleset API to load the resulting binary ruleset. Note that the compiler adds the output format information
into the binary ruleset. However, the DPI engine ignores this information. The DPI engine only uses input task
parameters for output formatting.

Use the human-readable text ruleset and the compiled binary ruleset to configure the DPI engine.

DPI Task Input Queue Configuration

You must configure the DPI engine before processing any packets. You configure the DPI by using the API to load the
compiled ruleset (binary configuration image). The ruleset can be loaded as part of the configuration file you create in
the ASE or use an API to dynamically load the compiled ruleset.

The DPI engine receives input tasks., and processes tasks for a given task queue in order. The input task parameters
contain the packet-specific control information, such as the position of the packet in a flow (first, intermediate, or last),
and the start and end offset.

The input task parameters include one of the following DPI output formats. which indicates whether the DPI output is
token only, token with packet, or token ID.

 Token only
 Token with packet
 Token ID with start pointer and end pointer

The following table describes the DPI function blocks and registers.

Table 27 DPI Function Blocks and Registers

Function Block Register Name Description

Buffer Management taskStartFifoHighWaterMark High water mark for the task start FIFO. Can be programmed
to a value from 0 to 7. Default = 5

taskContentsRecvIntFifoHighWaterMark High water mark for the task contents receive interface FIFO.
Can be programmed to a value from 0 to 15. Default = 13

taskContentsFiFoHighWaterMark High water mark for the task content FIFO. Can be
programmed to a value from 0 to 7. Default = 5

taskOutputFifoHighWaterMark0 High water mark for the DPI task output FIFO. Can be
programmed to a value from 0 to 31. Default = 29

taskOutputFifoHighWaterMark1 High water mark for the DPI task output FIFO. Can be
programmed to a value from 0 to 31. Default = 29

taskOutputFifoHighWaterMark2 High water mark for the DPI task output FIFO. Can be
programmed to a value from 0 to 31. Default = 29

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 123 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 9: Deep Packet Inspection (DPI) Engine
Initiating DPI Processing

Context Across Packets Within a Flow

The DPI engine has access to the system memory where the RegEx ruleset instructions and the cross-packet contexts
are stored. Context data (flow-specific task packet data) is stored in memory for rescanning along with the next packet
in the flow. Context data includes context length, start condition, start condition stack, and packet data. The DPI
engine synchronizes the context reads and writes for a given flow ID.

Initiating DPI Processing

There are three independent threads in the DPI engine. Each thread has its own task parameters and task packet data
that control the DPI engine’s processing and output. Task parameters also define the output configuration of the DPI
engine.

The DPI engine typically receives tasks from the following accelerator engines.

 Modular Pattern Processor (MPP) – The MPP classifier can send packets directly to the DPI engine.
 Packet Assembly Block (PAB) – Packets reordered using IP-Defragmentation, TCP termination, or similar protocols

can be sent directly from the PAB to the DPI engine.
 CPU complex – The CPU can invoke the DPI engine directly.

The output target module is also specified in the Virtual Pipeline path. The typical target for tasks leaving the DPI
engine is an entity that is capable of doing classification and making decisions.

The DPI engine typically sends tasks to the following accelerator engines.

 CPU complex – The packets have been classified and the CPU processes the answers.
 MPP – Performs additional classification of the DPI engine outputs.

DPI Task Input Format

The DPI engine receives input tasks. Tasks for a given task queue are processed in order. The system arbitrates
between the two logical queues and then between the three task queues of the selected logical queue using the
configuration and task start interface engine backpressure signals. For task data referenced by descriptors in an input
task, the data is fetched from system cache or memory.

The following table shows the input task format for the DPI engine.

Memory Configuration largeContextRecordSize Size of each large context block (LCB). Can be set to 512 bytes,
1 KB, 2 KB, or 4 KB (default).

smallContextRecordsize Size of each small context record (SCR). Can be programmed
to 32, 64 (default), 128 or 256 bytes.

numLargeContextRecords Total number of large context records supported. The value
ranges from 0 to 224. Default = 0

numSmallContextRecords Total number of small context records supported. The value
ranges from 0 to 224. Default = 0

rulesetMemorySize Total memory allocated for rulesets. The value ranges from 0
to 128 MB. Default = 64 MB

rulesetBaseAddress Ruleset memory base address. Calculated during system
memory allocation. Read only.

Function Block Register Name Description

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 124 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 9: Deep Packet Inspection (DPI) Engine
DPI Task Input Format

Table 28 Input Task Format

Load Balancing

The DPI engine has two task receive queues, a high priority queue and a low priority queue. Internally, each of the
three processor subengines has a high and low priority queue for incoming tasks. The task receive queue high and low
priority tasks are assigned, respectively, to the subengine’ high and low priority queues.

Name Value Description

ResultFlags 1B This byte specifies the format of the output task.

Bit Field Description

3 RetainPacket If this bit is set, the original packet is forwarded with the DPI engine results
appended to the packet. If this bit is clear, the incoming packet is discarded
and the outgoing task only contains the DPI engine results.

2:0 ResultFormat 000: Single result only – These are always 12-byte formats. The output
template logic selects which bytes are of interest.
001: Bit vector result.
100: All results, 4-byte result format. See the Result Format section for more
information.
101: All results, 8-byte result format.
111: All results, 12-byte result format.

StreamFlags 1B This byte specifies the stream state for this packet. It can indicate that this is the first packet on the
stream or the last. If bits 0:2 are clear, the packet is neither first nor last and therefore is assumed to be
intermediate. This byte is ignored for non-cross-packet cases.

Bit Field Description

2 End of Stream,
discard results

Any stored context is released. No output task is generated.

1 End of Stream Causes any stored context to be released.

0 Start of Stream For cross-packet cases, this bit indicates that this is the first packet of the
context. Any previous state should be discarded. If a large context record is
associated with this stream, it should be freed.

StreamId 24b The index into the context table specifying which cross packet context this packet belongs to. If it is set
to all 1s (0xFFFFFF), then no cross packet inspection is being done.

StartCondition 16b The start state for the RegEx processor. For cross-packet inspection, this parameter is only relevant when
StartOfStream is set.

MaxOutputs 2B For the All Results output case, specifies the maximum number of result bytes permitted. Any results in
addition to this are dropped.

StartOffset 2B Specifies how many initial bytes of the incoming packet to skip before processing. Can be used to skip
over headers in the packet.

EndOffset 1B Specifies how many bytes from the tail of the packet to not process. Can be used to avoid RegEx
processing on packet trailers.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 125 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 9: Deep Packet Inspection (DPI) Engine
DPI Task Input Format

Figure 28 DPI Input Task Queues

As tasks arrive, they are assigned to subengines based on the load balancing algorithm you select. The load balancing
of the subengines can be configured to one of the following methods.

 Load balancing by process subengine – DPI uses high and low priority queues as a single resource. New tasks are
given to the subengine with the lowest load in both high and low priority queues. For example, a high priority
incoming task is sent to the high priority queue of the subengine with lowest total number of tasks in the sum of
its high and low priority queues.

 Priority load balancing – DPI sends high priority tasks to the high priority queue with the lowest load and low
priority tasks to the low priority queues with the lowest load, without regard to the subengine. For example, a
high priority task is assigned to the subengine with the fewest high priority tasks.

An exception to the load balancing algorithms occurs when the incoming task has a task order ID, used to define
packets that are part of a flow for cross-packet inspection. If a task arrives with the same task order ID as another task
already in a subengine queue, that packet is automatically assigned to the same subengine queue. This ensures that
packets are processed in order, so that cross-packet inspection results are based on the correct order. If no tasks with
the same task order ID are present in any queue, the selected load balancing algorithm assigns the incoming task to a
subengine.

The following table shows how the subengine task queues are mapped to the task priority backpressure signals.

Table 29 Task Queue Backpressure Priority Mapping

Subengine Number High Priority Queue Low Priority Queue

0 Priority 0 Priority 3

1 Priority 1 Priority 4

2 Priority 2 Priority 5

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 126 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 9: Deep Packet Inspection (DPI) Engine
DPI Task Input Format

The DPI engine does not use priorities 6 and 7 for backpressure for subengine load balancing.

Result Format

The following section describes the format of the results that are returned.

 First Result or Single Result – This option enables a special feature in the DPI engine that reports only the first
match of a regular expression in the packet.

 All Results – If this option is enabled, every match is reported even if it is a subset of, or partially overlaps, another
match. If two or more expressions match the same input, all are reported. The following are the different All
Results format option actions.
— All Results, 12-byte result format – Returns the token ID, start pointer and end pointer of the matched

character’s location.
— All Results, 8-byte result format – Suppresses the output of a pointer to the location of the last character

(byte) matched by any regular expression.
— All Results, 4-byte result format – Disables reporting of both the start and end pointers associated with

each token returned by the DPI engine.
 Bit vector format – DPI engine returns a bit vector of token ID matches. Each bit corresponds to a token.

Instead of outputting the actual token values, you can set up the DPI engine to return a bit vector indicating
which token ID values were matched during the scan. A 1 in a bit position indicates that the corresponding
token ID value was matched at least once during the scan. A 0 indicates that the corresponding token ID was not
matched. The indexing for the bit vector output is 0-based, so the 0th bit of the first Dword corresponds to a
token ID value of 0, the first bit corresponds to token ID 1, etc.

You cannot use the bit vector format if there are more than 128 tokens in the ruleset, because this format can
only send up to 128 tokens in the output parameter. Although the ruleset could contain many more than
128 rules, the token values must be in the range 0 to 127. Otherwise, you must use the All Results format.

Start Conditions

The start condition mechanism is a unique and powerful feature that has two complementary uses. First, it allows
multiple rulesets to be organized into a single compiled binary image in which each scan job can dynamically select
the ruleset to use at run time. Second, you can change the active ruleset by matching certain specified patterns. If you
change the active ruleset while in match all mode, the change itself is greedy. This means that when a pattern is
matched that causes a change in the start condition, the hardware execution immediately switches start conditions
without doing any further matching within the text that matched.

The DPI engine supports up to 16K start conditions. If it is initialized with no start condition specified, it defaults to
start condition two.

For more information about start conditions and the different scan modes, refer to the Axxia Communication Processor
Deep Packet Inspection Engine Programming Guide.

Maximum Output

The maximum output value limits the total number of reported items for the input task. When you use the All Results
format, the DPI output has token output followed by the retained packet data in the output packet. The maximum
size is limited to 64 KB. If there are more token outputs, the output is clipped at 64 KB.

NOTE MaxOutputs is the maximum number of bytes (not results), and MaxOutput results are truncated to the nearest
8-byte boundary.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 127 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 9: Deep Packet Inspection (DPI) Engine
DPI Task Output Format

DPI Task Output Format

After it finishes a packet inspection, the DPI engine sends results through an output task. The system creates an
output task based on the information passed in the associated input task. To transmit tasks that require data copies
(for example, sending matching data with results) the DPI engine writes the reassembly data to memory and requests
new memory blocks as needed. After creating the task and completing any related memory writes, the DPI engine
sends the task to the next engine.

There are three different output task formats – FirstResult, VectorResult, and AllResult – as explained in the Input Task
format. The DPI output task format depends on the input task ResultFormat configuration. The following table shows
the output task formats.

Table 30 Output Task Formats

Byte FirstResult VectorResult AllResult

0 FirstResult VectorResult NumResults

1

2 Unused

3

4

5

6

7

8

9

10

11

12 Unused

13

14

15

16 ResultFlags

17 ErrorFlags

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 128 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 9: Deep Packet Inspection (DPI) Engine
DPI Task Output Format

FirstResult and AllResult Formats

The following figure shows the FirstResult and AllResults formats. For more information about the available AllResult
format options, see the Result Format section.

Figure 29 Result Format

Bit 31 of the Dword0 is the Error Token bit, which is set if it is an error token. When an error token is sent, the start
pointer is whatever was stored for the start pointer when the error occurred, the end pointer is the current file position
when the error occurred, and the Debug Info field contains the current start condition during the error. The following
list shows the conditions when the error token is sent.

 A backup error
 An invalid instruction error
 A stack overflow error

In each case, the task that created the error is dropped.

Byte 16 of the ResultFlags output parameter consists of the following fields.

Table 31 ResultFlags Output Parameter - Byte 16

Bit Field Name Description

2:0 Result Format This is a copy of the ResultFormat flag from the input task.
000: Single result only.
001: Bit vector result.
100: All results, 4-byte result format.
101: All results, 8-byte result format.
111: All results, 12-byte result format.

3 Overflow In the case of All Results, overflow occurs when the number of results is
larger than the specified maximum in the input task.

4 Large Context This bit is set if a large context is associated with this stream.

5 Job Terminate The job was stopped as the result of a halt instruction in the DPI
program.

6 ctx alloc error A large context was needed, but it could not be allocated.

7 Error Some other error occurred, as recorded in ErrorFlags. This bit is set if any
bit in ErrorFlags is set.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 129 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 9: Deep Packet Inspection (DPI) Engine
DPI Data Structures, Commands, and Exception Handling

Byte 17 of the ErrorFlag output parameter consists of the following fields.

Table 32 ErrorFlag Output Parameter - Byte 17

Vector Result Format

The Vector Results format uses the first 16 bytes, bytes 0 through 15, of the task results as a bit vector map. Result
tokens numbered 0 to 127 are indicated by bits set in the 128 bits of the 16 bytes, starting with 0 as the first bit of the
first byte that indicates token 0, and ending with the last bit of byte 15, 127, that indicates the result token 127.

For this format, you cannot use more than 128 result tokens, and they must be numbered 0 through 127.

DPI Data Structures, Commands, and Exception Handling

For more information on the DPI configuration registers, context record formats, API data structures, commands,
performance monitoring, and exception handling, refer to the Axxia Deep Packet Inspection Programming Guide.

Bit Field Name Description

0 IR_ERROR_C Illegal DPI instruction.

1 Backup too far error The hardware stops trying to match any pattern if it is larger
than 3,580 bytes by default. This backup rescans the same
byte or bytes. If the hardware attempts to backup more
than 3,580 bytes, an error flag is set in the status returned
with the job that attempted it.

2 SC stack overflow Start condition stack overflow.

3 SC stack underflow Start condition stack underflow.

4 Uncorrected parity error RAM parity error.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 130 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 10: Packet Integrity Check (PIC) Engine
Overview

Chapter 10: Packet Integrity Check (PIC) Engine

Overview

The Packet Integrity Check (PIC) accelerator engine acts as an intermediate engine that receives an input task from a
preceding engine. It efficiently calculates a cyclic redundancy check (CRC) or checksum for a packet without needing
the MPP or CPU engines, then sends its result to another engine in the pipeline instance. You define the preceding and
succeeding engines as part of a pipeline.

The PIC supports two task receive queues; one high priority and one low priority. The PIC processes tasks and
maintains task order within a given task priority in each task queue as it performs the operations you request. The PIC
can simultaneously operate on multiple tasks, but preserves the order of the issued tasks in each task queue.

Optionally, the PIC can update the packet with the calculated CRC or checksum. The PIC can modify the IP header
checksum, IP L4 checksum, the SCTP CRC or checksum, and the trailer CRC.

 The PIC can perform only a single CRC or checksum option per task, except for IPHeaderAndL4Checksums, where two
checksums are calculated.

Features

The PIC engine can perform a number of CRC and checksum calculations that many IP Layer 4 protocols use for packet
verification.

CRC and Checksum Operations

Use the CRC or checksum calculation to verify an incoming packet, or calculate a new value for a modified packet. The
input task includes pointers to the packet in memory, start and end offsets, and the designated CRC or checksum
calculation to perform. By specifying the start and end offsets, you can use the PIC engine to calculate a CRC or
checksum on an arbitrary block of data. Optionally, the PIC engine can update the packet with the calculated CRC or
checksum. The PIC engine can modify an IP header checksum, an IP Layer 4 checksum, a Stream Control Transmission
Protocol (SCTP) CRC or checksum, or a trailer CRC.

The PIC engine supports the following common CRC algorithms.

 CRC16-USB
 CRC16-X25 and PPP.
 CRC16-UTRAN Frame Protocol.
 CRC32-AAL5.
 CRC32-Ethernet (Frame Check Sequence).
 CRC23C-RAW
 SCTP-RFC3309 (CRC32C)

The PIC engine supports the following common checksum algorithms.

 IP Header checksum
 IP Layer 4 checksum
 IP Header checksum and the IP Layer 4 checksum, if they exist in the packet
 Generic 16-bit checksum
 Generic 16-bit checksum using XOR of ones (checksum inverted)

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 131 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 10: Packet Integrity Check (PIC) Engine
PIC Engine Processing

 SCTP-RFC2960 (Adler32 checksum)
 BIP (Bit Interleaved Parity).

Additionally, you can configure the PIC engine with up to four user-defined and software-programmable CRC
polynomials.

NOTE A software-programmable CRC is less efficient to use than a hardware-supported CRC.

Supported IP Layer 4 Protocols

The PIC engine supports several IP Layer 4 protocols. The NextHeader (NH) or protocol value identifies each Layer 4
protocol, part of the IPv4 or IPv6 header. The following table identifies each supported IP Layer 4 protocol, its
NextHeader value, support for IPv4, IPv6, or both, and the corresponding Request for Comments (RFC) document
number.

Table 33 PIC Supported IP Layer 4 Protocols

 PIC Engine Processing

The PIC supports three modes of operation for processing an incoming packet, as described in the following table.

Table 34 PIC Packet Processing Modes

IP Layer 4 Protocol NextHeader Value IP Support RFC Document

Authentication Header 0x33 IPv6 RFC 4302

Destination options 0x3c IPv6 RFC 2460

Fragment Header 0x2c IPv6 RFC 2460

Hop by Hop options 0x00 IPv6 RFC 2460

ICMP-v4 0x01 IPv4 RFC 792

ICMP-v6 0x3a IPv6 RFC 4443

IGMP 0x02 IPv4 and IPv6 RFC 3376

MLD 0x3a IPv6 RFC 3810

Mobility Header 0x87 IPv6 RFC 3775

No Next Header 0x3b IPv6 RFC 2460

Routing Header 0x2b IPv6 RFC 2460

TCP 0x06 IPv4 and IPv6 RFC 793

UDP 0x11 IPv4 and IPv6 RFC 768

UDPLite 0x88 IPv4 and IPv6 RFC 3828

Mode Description

Check Verify the CRC or checksum of the packet, based on the type supplied by the task.

Generate Generate the CRC or checksum for the packet, based on the type supplied by the task.

Modify Generate the CRC or checksum for the packet and modify the corresponding fields in the
packet, based on the type supplied by the task.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 132 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 10: Packet Integrity Check (PIC) Engine
PIC Engine Processing

The PIC type is a one byte value supplied by the task that defines the CRC or checksum to be performed by the PIC on
the packet.

Table 35 PIC Type Values for Available Algorithms

The PIC processes incoming packets using the parameters passed to it using the task.

After the CRC or checksum calculation, depending on the mode of operation, either the packet is modified or not and
sent to the output task queue, along with the task parameters for the successive engine in the Virtual Pipeline. You can
mask a subset of the errors detected by the PIC during processing.

Because of the nature of protocols and error checking, not every combination of errors is possible. The PIC parses the
packet to calculate header and embedded checksums until either the parsing is complete, or a fatal packet error
occurs. Packet errors can be fatal or non-fatal, with the following behaviors:

 If the PIC encounters one or more fatal errors it stops parsing the packet, so that any additional errors that might
have been discovered with further parsing are not reported.

 Non-fatal error conditions can be reported simultaneously, potentially together with one or more fatal errors. The
following conditions are considered non-fatal, if you have configured the error mask to ignore the checking of the
corresponding errors:
— Detected illegal TCP flags
— Detected Mobility Header NH is not NONEXT
— Detected IPv4 TTL=0 or IPv6 HL=0
— Detected a fragmented packet
— Detected CHK=0000 IPv6 UDP

The PIC can process multiple tasks at the same time, and the task order is always maintained in each task queue so
that the output task queue contains the packets in the same order they arrived in the input task queue.

Value CRC or Checksum Setting

0x21 CRC16 UTRAN Frame Protocol

0x22 CRC16-USB

0x23 CRC16-X25/PPP

0x24 CRC32-AAL5

0x25 CRC32-Ethernet

0x26 CRC32C

0x28 Variable CRC #0 (software configured)

0x29 Variable CRC #1

0x2a Variable CRC #2

0x2b Variable CRC #3

0x01 IP header checksum

0x02 IP L4 checksum (Only L4 checksum)

0x03 Both IP header and L4 checksum

0x04 Generic 16 bit checksum

0x05 Generic 16 bit checksum with XOR of 1’s

0x08 SCTP-RFC2960 (Adler32 checksum)

0x09 SCTP-RFC3390 (CRC32C)

0x10 BIP16

0x00 No-op (do nothing)

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 133 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 10: Packet Integrity Check (PIC) Engine
PIC Input and Output Parameters

PIC Input and Output Parameters

PIC Input Parameters

The PIC input parameters configure the PIC for a single operation.

Table 36 PIC Input Task Parameters

Table 37 ASE Label and PIC Checking Performed

Parameter Size Description

flags 1B Bits 7:6 – The upper 2 bits show the type of relative offset.
 00: Relative to end of packet
 01: Relative to start offset
 10: Relative to start of packet
Bit 5
 1: Generate a checksum.
 0: Validate a checksum
Bit 4
 1: Modify the packet.
 0: Do not modify.
Bits 3:0 are reserved.

type 1B The type of checking to perform. See the following table for the types of checking performed.

startOffset 2B The offset of the first byte of the packet data to examine.

endOffset 2B Based on the endOffsetType parameter.

chk16Seed 2B Initial seed for generic 16-bit checksum.
Default: 0x0000.

ASE Label PIC Operation Performed

UTRAN_16 CRC16 UTRAN Frame Protocol

USB_16 CRC16 USB/XMODEM

CPPP_X25_16 CRC16 X25/PPP

ETH_32 CRC32 AAL5

CRC32_Ethernet CRC32 Ethernet

CRC32C_Raw CRC32C

VariableCRC_0
VariableCRC_1
VariableCRC_2
VariableCRC_3

Four CRCs for which you define the parameters.

IPHdrChecksum IP header checksum

IP_L4Checksum IP Level 4 checksum (only Level 4 checksum)

IPHdrAndL4Checksums Both IP header and Level 4 checksum

Generic_16bit Generic 16-bit checksum

Generic_16bit_XOR1s Generic 16-bit checksum with XOR of 1s

Adler32_SCTP SCTP-RFC2960 (Adler32 checksum)

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 134 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 10: Packet Integrity Check (PIC) Engine
PIC Input and Output Parameters

Setting Input Parameters

The following table shows the effects of setting the generate and modifyPacket parameters for different CRC types.

Table 38 Input Parameter Settings Affects on CRC Operations

CRC32C_SCTP SCTP-RFC3309 (CRC32C)

BIP16 Byte Interleaved Parity 16

NO_OP Do nothing

CRC Type generate modifyPac
ket Description of Parameter Setting Impact

CRC16_UTRAN
CRC16_USB
CRC16_X25_PPP
CRC32_AAL5
CRC32_Ethernet
CRC32C_Raw

F F The CRC is calculated as a check. The calculated CRC and pass/fail are returned
in the task parameter.

T F The CRC is calculated as a generate. The calculated CRC is returned in the task
parameter.

T T The CRC is calculated as a generate. The calculated CRC is returned in the task
parameter. The calculated CRC is always appended to the end of the PDU.

IPHdrChecksum
IP_L4Checksum
IPHdrAndL4Checksum

F F The IPv4 header and/or Level 4 checksum is calculated as a check. The
calculated checksum and pass/fail are returned in the task parameter.

T F The IPv4 header and/or Level 4 checksum is calculated as a generate. The
calculated checksum is returned in the task parameter.

T T The IPv4 header and/or Level 4 checksum is calculated as a generate. The
calculated checksum is returned in the task parameter. The calculated
checksum replaces the data in the PDU.

Adler32_SCTP F F The Adler checksum is calculated. The SCTP header checksum is extracted and
compared with the calculated value. The calculated Adler checksum and
pass/fail are returned in the task parameter.

T F The Adler checksum is calculated. The calculated Adler is returned in the task
parameter.

T T The Adler checksum is calculated. The calculated Adler checksum is returned in
the task parameter. The calculated Adler checksum is replaced in the SCTP
header.

CRC32C_SCTP F F The SCTP CRC is calculated. The SCTP header CRC is extracted and compared
with the calculated value. The calculated CRC and pass/fail are returned in the
task parameter.

T F The SCTP CRC is calculated. The calculated CRC is returned in the task
parameter.

T T The SCTP CRC is calculated. The calculated CRC is returned in the task
parameter. The calculated SCTP CRC is replaced in the SCTP header.

BIP16 T or F F The calculated BIP is returned in the task parameters.
Note that the BIP cannot modify a packet.

ASE Label PIC Operation Performed

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 135 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 10: Packet Integrity Check (PIC) Engine
PIC Input and Output Parameters

PIC Output Parameters

The PIC engine has two output parameters, status and computedValue. The 32-bits of the status output parameter are
the first five rows of in this table.

Table 39 PIC Output Parameters

VariableCRC_0
VariableCRC_1
VariableCRC_2
VariableCRC_3

F F The generic CRC is calculated as a check. The calculated CRC is returned in the
task parameter.
Note that the generic CRC cannot modify a packet.

T F The generic CRC is calculated as a generate. The calculated CRC is returned in
the task parameter.
Note that the generic CRC cannot modify a packet.

Generic_16bit
Generic_16bit_XOR1s

F F The generic checksum is calculated as a check. The calculated checksum is
returned in the task parameter.
Note that the generic checksum cannot modify a packet.

T F The generic checksum is calculated as a generate. The calculated checksum is
returned in the task parameter.
Note that the generic checksum cannot modify a packet.

Field Bit Width
(Bits/Bytes) Description

ALLGOOD 63 1b Pass or fail.
 0: The task failed one of the error code checks
 1: No error

Status Code 62-46 17b See the PIC Status Code Error Bits table for the information stored in these seventeen
bits.
Valid only when the type of checking is IPHdrChecksum, IP_L4Checksum, or
IPHdrAndL4Checksum.
These bits are set to zero if not operating on an IP checksum.

errorCode 45-43 3b Bit 45 – Set if the Layer 3 IP header checksum is good or the packet is IPv6.
Valid only when the type of checking is IPHdrChecksum, IP_L4Checksum, or
IPHdrAndL4Checksum.
Setting the generate input parameter sets this bit

 Bit 44 – For each type of PIC operation, this bit is set if the check is successful.
Setting the generate input parameter sets this bit

 Bit 43 – Set if the Layer 3 IP header and the Layer 4 payload are recognized.
Valid only when the type of checking is IPHdrChecksum, IP_L4Checksum, or
IPHdrAndL4Checksum.

NextHeader 42-35 8b The IPCHK layer4 protocol. This is returned if input task parameter type is 01, 02, 03.

errorCode 34-32 3b Bit 34 – DATAERR: used to identify an error on the data fetch for the packet.
 Bit 33 – PARAMERR: used to identify an error with the input task parameters.
 Bit 32 – TASKERR: used to identify an error on the input task.

computedValue 4B The computed result based on the configured operation. When both the IP header
and L4 checksum are being output, then this is the header checksum followed by
the L4 checksum. The output most significant bits are padded with zeroes as
needed. On an illegal task or malformed packet the computed value is undefined.

CRC Type generate modifyPac
ket Description of Parameter Setting Impact

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 136 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 10: Packet Integrity Check (PIC) Engine
PIC Exception Handling

PIC Status Parameter

The following table shows the meaning of the 17 error status bits in the Status Code parameter.

Table 40 PIC Status Code Error Bits

 PIC Exception Handling

The PIC engine discards all incoming tasks that have the task error bit set and does not set the task error bit. The PIC
engine reports the following kinds of errors by logging sticky bits, which you can configure to trigger an interrupt and
transmit in the errorCode output parameters.

 Data hardware errors reported from system memory
 Illegal or malformed task parameters
 Malformed packets, by enforcing packet consistency checks and field value checks as defined by the applicable

standard references documentation
 When PIC Type (1B) is not one of the supported CRC/checksum setting, PIC flags the output task as a FAIL, by

setting the PARAMERR bit (Bit 33) in its output task parameters.

Bit Description

62 Detected IPv6 jumbogram (packet exceeding standard MTU

61 Detected Mobility Header NH is not NONEXT

60 Detected CHK = 0000 IPv6 UDP
or
Detected illegal TCP flags

59 Not enough data to process extension header

58 Detected IP TL is greater than PDU length

57 Detected fragment

56 Detected ODD length IPv6 ext authentication or routing header

55 Detected UDP length or UDPLITE length is greater than IP TL

54 Detected UDPlen or UDPLITElen is less than 8 (not UDPLITE=0)
or
Detected TCP Data Offset is greater than IP TL

53 Detected IP TL not large enough to support Level 4 protocol

52 Detected an unsupported protocol

51 Detected IPv4 Time to Live = 0 or IPv6 HopLimit = 0

50 Detected IPv4 TL is less than IPv4 HL

49 Detected IPv4 HopLimit is less than 5

48 Detected header length is greater than PDU length

47 Detected packet that is not IPv4 or IPv6

46 General failure (hardware problem)

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 137 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 10: Packet Integrity Check (PIC) Engine
PIC Statistics Monitoring

 PIC Statistics Monitoring

The PIC has configuration registers that count:

 Number of tasks received without a task error
 Number of tasks received with a task error
 Number of tasks sent without an error
 Number of tasks sent with an error

Apart from these counters, you can use the SMON counters and utilities to measure PIC-specific metrics.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 138 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 11: Network Compute Adapter (NCA)
Overview

Chapter 11: Network Compute Adapter (NCA)

This chapter defines the Network Compute Adapter (NCA) capabilities that transfer tasks between the CPUs and the
accelerator engines.

Overview

The Network Compute Adapter (NCA) transfers tasks between the CPUs and the accelerator engines. The CPUs use the
NCA to send and receive messages. The NCA enables the host CPU to configure the engine sequence.

The NCA engine has separate task receive queues and transmit queues that permit concurrent processing of different
protocol levels. The CPUs can directly access these task queues from the user space.

Tasks, containing packet data, can have up to 32 bytes of parameters accessible by the software. All communication is
through simple PCQs that are located in cached CPU memory. Therefore, the CPU overhead is minimized to a small
number of cached memory accesses. The buffer pools support four allocation sizes (256 B, 2 KB, 16 KB, and 64 KB). The
memory management block (MMB) controls these buffer pools so that the software can efficiently free or allocate
buffer pools.

Regarding the memory-management model, the receive packet data is placed in buffers that the memory
management block (MMB) allocates, whereas the transmit packets can be placed either in memory
management-allocated buffers or in software-managed buffers. If the transmit packet data is in software-managed
buffers, the NCA copies this data into the memory-manager-allocated buffers. The software can then reuse the
original software-managed buffer after the NCA consumes the entry. However, when the transmit packet data is in
memory-manager-allocated buffers, the NCA need not copy the data, and so the buffer is returned to the memory
manager as a free buffer after the message is consumed.

For more information about the NCA see the Network Compute Adapter (NCA) chapter within the Axxia AXX2500 Family
of Communication Processors Multicore Reference Manual.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 139 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 12: Ethernet Input Output Adapter (EIOA) Engines
Overview

Chapter 12: Ethernet Input Output Adapter (EIOA) Engines

The AXX2500 family has Ethernet Input/Output Adapter (EIOA) engines and a Preclassifier and Ethernet Switch (PCX).
The EIOA-PCX performs Layer-2 Ethernet switching with Layer 3 and Layer 4 support. The PCX routes and switches
packets, performs policing, modifies packets, gathers statistics, and enforces any access control lists (ACLs).

Overview

The AXX2500 family has two Ethernet interface adapters engines, EIOA0 and EIOA1, that each support two slots: a
single 10G interface on one slot and up to four 1G interfaces on the other slot. Each EIOA engine connects to the Axxia
Virtual Pipeline interface and memory.

 Each slot contains an Ingress Packet Processor (IPP) and Egress Packet Processors (EPP). The IPP parses incoming
packets, gathers the information needed for classification, and collects the classification results. The EPP shapes the
traffic on the output ports, plus optionally modifies packet fields.

The bridging layer has a hardware based learning feature which can be used to bridge packets between Ethernet
ports, offloading the process from other acceleration engines.

You can use the Preclassifier to configure the packet classification, based on the packet data. The bridging layer (BL)
can determine which of the following packet actions to perform.

 Switch the packet
 Determine the packet bridging destination
 Filter packet according to an access control list (ACL)
 Policing
 Store VLAN statistics

EIOA Engines with Preclassifier and Ethernet Switch (PCX) Features

Each EIOA engine can serve as a start engine or an end engine for an engine sequence, creating a new task on packet
arrival, and receiving a task for transmitting a processed packet.

Each EIOA engine receives packets from and transmits packets to external Ethernet interfaces. Each EIOA engine
communicates with other engines by passing tasks that include parameters, flow IDs, packet information, or a pointer
to packet information.

Additionally each EIOA engine supports these Ethernet switching capabilities.

 Hardware-based Address Learning
 VLAN Support
 Access Control List (ACL) support, using Layer 2, Layer 3, and Layer 4 information
 Ingress Policing
 Scheduling and Shaping
 Additional Ethernet Switching Functions

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 140 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 12: Ethernet Input Output Adapter (EIOA) Engines
EIOA Engines with Preclassifier and Ethernet Switch (PCX) Features

Hardware-based Address Learning

The Axxia EIOA supports the following Hardware-based Address Learning features.

 Supports up to 8000 addresses
 Supports programmable per port mask or drop packet behavior
 Provides statically programmable addresses
 Supports hardware-based forwarding
 Supports hardware-based address learning and aging

The EIOA provides lookup support for the following protocols.

 Independent VLAN Learning (IVL)
 Shared VLAN Learning (SVL)
 QinQ Tunneling (QinQ)
 Multiprotocol Label Switching (MPLS) address

VLAN Support

The EIOA/PCX supports the following VLAN features.

 Supports up to 4096 simultaneous VLANs
— Port-protocol and MAC-based VLANs
— Private VLANs

 Validates all VLAN IDs received with a packet
 Provides VLAN filtering on input ports
 Provides VLAN tag insertion, deletion, and replacement based on task parameters
 Performs optional static routing based on the VLAN ID
 Accumulates VLAN-based statistics

— Monitoring done with 1024 available counters (counts both bytes and packets)
— Counters can work on a per VLAN, Port (Rx or Tx), or Class of Service (Cos) Priority basis

 Supports up to 1024 packet byte counters and 1024 packet counters you can configure

Access Control List Support

The EIOA-PCX supports the following features for access control lists.

 The EIOA can support up to 32 ACLs (Access Control Lists), each with up to 16 rules (Access Control Entries) per
ACL.

 Each ACL rule s is based on a table lookup, which spans the following Layer 2, Layer 3, and Layer 4 protocol fields.
— MAC (Media Access Control) source address
— MAC destination address
— IP source address
— IP destination address
— TCP and UDP source port
— TCP and UDP destination Port
— IP protocol and Ethertype
— VLAN Class of Service and IP priority
— VLAN id

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 141 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 12: Ethernet Input Output Adapter (EIOA) Engines
EIOA Engines with Preclassifier and Ethernet Switch (PCX) Features

 A matching ACL determines which of the following actions to take.
— Permit the packet (enqueue) or Deny the packet (do not enqueue)
— Trust (use received CoS Priority value) or Do not Trust (use the default or programmed priority)
— Log (task sent to the CPU to record the ACL match)
— Port Mirror (task and packet sent to another Virtual Pipeline instance with EIOA egress)
— Replace the VLAN ID based on a matching source MAC address (way to classify non-routed packets)

Ingress Policing

 512 policers shared between ports
 Dual token-bucket algorithm on a per-port or per-priority basis
 Discard behavior programmed on a per-policer basis
 Packet color determination based on the Metro Ethernet Forum (MEF) 10.2 specification
 Programmable Discard and Demote based on priority, policer, or color.
 Congestion points selectable on per-policer basis

Scheduling and Shaping

The EIOA supports task scheduling on the egress ports and egress port shaping.

 Strict Priority (SP) scheduling
 Weighted Priority (WP) Scheduling
 Mixture of SP and WP scheduling on a port
 Port shaping using a single token bucket shaper

Additional Ethernet Switching Functions

 Internet Group Management Protocol (IGMP) snooping.
 Port mirroring support for both Tx and Rx ports.
 Logically combine an arbitrary number of links for higher bandwidth or fault redundancy. Up to eight ports can

be aggregated.
 802.1d and 802.1w Rapid Spanning Tree Protocol (STP) state management.
 Packet Discard (programmable maximum packet length).
 Port-protocol and MAC-based priority.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 142 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 12: Ethernet Input Output Adapter (EIOA) Engines
Axxia EIOA Architecture

Axxia EIOA Architecture

Figure 30 Axxia Dual EIOA Engines with Preclassifier and Ethernet Switching (PCX) Architecture

Each of the EIOAs exist as a separate task destination in an engine sequence, and communication with the two EIOAs
is the same as with other accelerator engines. When a packet is bridged between two ports of the same EIOA engine,
a task must be generated to transfer the packet from the ingress to the egress port.

EIOA Packet Classification

For ingress traffic, the two EIOAs share a Preclassifier that looks at specific packet fields to identify the packet
destination and processing requirements. The Preclassifier examines the following packet information.

 Packet switching and routing – Information such as source address and destination information that includes
MAC address, VLAN IDs, and MPLS labels.

 Compares the parsed packet information against a set of programmable Access Control List rules for one of
32 ACLs. You can configure the ACL to require an exact match or use designators. This check determines whether
the packet is permitted or denied.

For the specific packet information examined, see the Access Control List Support section in this chapter.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 143 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 12: Ethernet Input Output Adapter (EIOA) Engines
Axxia EIOA Architecture

Virtual Pipeline Destinations

Based on classification results, the EIOA drops the packet or sends it to one or more of 32 virtual pipeline destinations,
with up to 24 switched destinations, including the ten EIOA ports, error tracking destinations, and other virtual
pipeline entry points.

The task type determines the packet processing. The destination is one of the pieces of information in the task type.
You can configure each packet destination to use one of three output task types. The following table describes the
task types, parameter set size, task source, and packet destination.

Table 41 Packet Destinations Based on an Output Task Type

Additionally, the EIOA supports two packet output task types that are used by the following specially configured
destinations.

Table 42 Special Destinations a Based on an Output Task Type

Egress Processing

For egress traffic, each EIOA engine can perform packet field editing, based on task parameters, and can transmit
packets based on configured scheduling and priority requirements.

Output Task Type Parameter
Set Size Task Source Packet Destination

Legacy
(ACP34xx format)

16B EIOA Ingress Other engines.
You configure the receiving port destination; it is not
determined through EIOA classification.

Classification 16B EIOA Ingress Other engines.
A task that is bridged from the EIOA ingress port to
destinations other than the EIOA egress ports

EIOA Egress 8B EIOA, other engines EIOA Egress.
A task with a switched or bridged packet for an EIOA port

Output Task Type Parameter
Set Size Task Source Packet Destination

Multicast Replication 32B EIOA Ingress EIOA Multicast replicator
Uses PCX classification and is sent to the EIOA multicast
queue.

Learning 8B + 18B PDU EIOA, MPP, or NCA EIOA, MPP, or NCA
A task with switch learning information, routed to an
engine that is not an EIOA port.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 144 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 12: Ethernet Input Output Adapter (EIOA) Engines
Ingress Packet Data Flow Overview

Ingress Packet Data Flow Overview

When a packet arrives, the EIOA engine processes the packet using the following steps.

1. Initial EIOA processing checks packet integrity and determines if the packet requires legacy processing or PCX
classification. See the EIOA Core Logic Processing section for common legacy packet types.

2. For non-legacy packets, the EIOA sends the packet header information to the PCX for additional classification to
determine the following information.

— The bridging destination, using the port and address
— Which ACL to use and ACL filtering results
— Policer to use and policing results
— VLAN statistics
— Virtual Pipeline Destination, based on classification results plus defined masks if appropriate, and associated

output task parameters

3. The task is enqueued to one or more of the EIOA virtual pipeline destinations. Tasks with multiple destinations are
enqueued in the multicast queue.

EIOA Core Logic Processing

When a packet arrives in the EIOA, the EIOA core logic performs the following functions.

 Checks packet integrity
 Performs IP checks, when necessary
 Stores packet data in memory
 Detects packets that require legacy processing – processing that skips the EIOA classification process. Legacy

processing is automatically selected for the following packet types:
— Packets less than 64 bytes in length
— PAUSE packets
— Ethernet Synchronization Messaging Channel (ESMC) packets
— Virtual Pipeline Extension (VPE) packets – This is a packet type defined by a configurable Ethertype that lets

you send packets from one Axxia device Virtual Pipeline instance directly to the Virtual Pipeline instance of
another Axxia device. For example, a packet can be processed on one Axxia device, then sent to another
Axxia device for scheduling on one of its output ports.

In addition, you can configure each EIOA input port to use one of the following modes.

 Legacy Mode – Supports processing in a similar way to earlier EIOA engine implementations, without performing
classification actions.

 Classification Mode – Supports the full switching, ACL, and policing functions available in the EIOA. The packet
types that require automatic legacy processing on a port in Classification Mode still receive legacy processing.

Core logic IP integrity checks generate status information that you can store and make available for task output
parameters, regardless of packet classification mode.

Ingress Packet Processor (IPP) Functions

The Ingress Packet Processor performs the following tasks.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 145 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 12: Ethernet Input Output Adapter (EIOA) Engines
Bridging Layer Classification and Switching

 Parsing the packet fields needed for classification. The parsing process detects the type of packet (Ethernet V2 or
SNAP) and whether or not the packet has VLAN tags. This information is used to locate relevant packet fields.

 Examining Layer 2, Layer 3, and Layer 4 fields and performing checksum verification for output task parameters.
 Sending the packet field data needed by each classification block.
 Assembling the results of parsing and classification into information for the output task parameters.

Bridging Layer Classification and Switching

Bridging Layer classification performs the following switching functions that results in a 24-bit
Virtual Pipeline destination.

 Forwarding (bridging)
 Address learning
 IP frame routing

Building the Bridging Lookup Keys

The EIOA supports a MAC address table of up to 8192 entries. This table typically can store approximately 4000 entries
before eviction starts. The EIOA looks up source and destination addresses using the same engine table, with different
keys. The bridging lookup key is a 62-bit key created to index the MAC address table.

Source Address Lookup

The EIOA is globally configured to use either the IVL mode or the SVL mode to determine the key for source
address lookup.

 Independent VLAN Learning (IVL) Mode – This mode uses a VLAN ID extracted from a configurable VLAN ID
table, using the port number or the port number plus Ethertype as an index. The EIOA creates the key using the
packet 48-bit MAC destination address and the assigned VLAN ID.

 Shared VLAN Learning (SVL) Mode – This mode uses a valid packet VLAN ID. The packet’s 48-bit MAC
destination address is used to create the key.

Destination Address Lookup

The EIOA parses the packet to determine the key for the destination address lookup, based on the following
switching modes.

 One-to-one SVL Mode – Single VLAN tagged packets. The EIOA creates the key with the single VLAN ID.
 QinQ Mode – Packets with valid inner and outer VLAN IDs. The inner and outer 12-bit VLAN IDs are used to create

the key.
 MPLS Mode – MPLS packets. EIOA creates the key with the 20-bit MPLS label.

The search operation results in either a hit (address found) or a miss (address not found). In the case of a hit, the search
returns an associated data structure which controls the forwarding of the packet. In the case of a miss, the packet's
VLAN index is used to determine the spanning tree state by reading a software controlled table to determine if the
packet can be flooded. The forwarding associated data structure consists of the following information.

 Address index
 Destination port map
 Source port number
 Layer 2 ACL deny or permit status
 Layer 2 ACL source/destination logging indication

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 146 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 12: Ethernet Input Output Adapter (EIOA) Engines
ACL Classification

This information is used to help determine the switching or routing decision for the packet.

For switched or bridged packets — packets sent from an EIOA input to an EIOA output port — a spanning tree
algorithm can be applied, and the resulting state stored by the host processor.

MAC Address Learning

Every received packet’s MAC address is queried in the MAC address table. The search operation results in either a hit
(address found) or a miss (address not found). In the case of a hit, the received packet's source port is compared to the
associated data in the address table. If these values match, then the packet has already been learned and the only
action taken is to refresh the address age. A mismatching source port or a lookup miss results in the packet being
submitted to hardware-based address learning. If possible, the address is stored in the MAC address table.

You can configure the hardware address learning to result in flooding, or sending a single learning task, for example,
to the MPP.

MAC Address Aging

The age of a MAC address entry defines whether the entry is valid, invalid, or static.

 Valid entry – A value between zero and all ones (non-inclusive).
 Invalid entry – A value of all ones.
 Static entry – A value of all zeros.

A lookup hit or a learning event for an address entry causes the EIOA to refresh the entry to a value of one. Once the
EIOA learns an address, it increments the address age by each configured period of time. You can define the aging
period to range between approximately 100 μs to multiple years.

You configure the time-out period for an address on a per-port basis. When an address is timed out, its age is set to all
ones, marking it a free entry.

ACL Classification

The EIOA supports up to 32 ACLs, with each list supporting a 9-tuple lookup on up to 16 rules. You can configure the
ACL based on the port, the VLAN ID, or a combination of both.

The table lookup is based on classification of the following protocol fields (Layer 2, Layer 3, and Layer 4), using the
associated classification algorithms.

Table 43 Type of Match for Each Protocol Field

Protocol Field Classification Algorithm

MAC source address Exact match

MAC destination address Exact match

IP source address Longest prefix match

IP destination address Longest prefix match

TCP/UDP source port Range match

TCP/UDP destination port Range match

IP protocol and Ethertype Exact match

VLAN Class of Service and IP Priority Exact match

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 147 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 12: Ethernet Input Output Adapter (EIOA) Engines
ACL Classification

For each ACL rule, the above fields can be defined as requiring a match, match a wildcard specification, or don’t care.

VLAN ID Exact match

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 148 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 12: Ethernet Input Output Adapter (EIOA) Engines
Ingress Policing

 If a packet matches on any of the rules, you can select the Permit, Deny, Log, and Adjust Priority actions that result
from an ACL classification. In addition, a policer flow is assigned, and port mirroring or VLAN replacement is indicated.

The result of the ACL classification can be used to modify the 24-bit virtual pipeline destination decision.

Ingress Policing

Each received packet is assigned to one of 512 policers based on an ACL-assigned policer ID. The policers limit the
admission of packets to the EIOA by performing flow-based packet limiting.

You can configure policers to accept a maximum number of bytes per second. Policers classify packets as out of profile
when the maximum number of bytes per second limit is exceeded.

Multicast storm control works similarly, and is performed on packets that are layer 2 multicast or broadcast packets on
a per-port basis. You can configure the multicast storm control to accept a maximum number of bytes per second
before traffic is considered to be out of profile.

You can configure the out of profile traffic processing with the following actions.

 Unconditionally dropped
 Dropped conditionally, based on the backpressure point associated with the policer
 Demoted priority
 Forwarded normally

The policing functions comply with the Metro Ethernet Forum (MEF) 10.2 specification. Policers have two token
buckets, for committed information rate (CIR) and excess information rate (EIR), with configurable thresholds and fill
rates.

Destination Result Map and Mask Operations

The EIOA supports bridging and routing. A packet is routed rather than bridged if it is addressed at Layer 2 to the
router MAC address configured for EIOA or if it is associated with one of the standard IP multicast Layer 2 addresses.
Bridged traffic is processed using the ingress bridging logic, using programmable virtual pipeline destinations.

When the EIOA completes ingress processing, it applies masks and maps to the destination map returned from the
destination lookup process. Maps add destinations; masks remove destinations. The masks and maps operate as
according to the following table.

Table 44 Sequential Destination Map and Mask Operations

Step Map or Mask Type Destination Operation

1 Destination Map The initial map used. When the destination address was not found in the MAC address
table for bridged packets, a flood pattern is returned, if the spanning tree state of the
port/VLAN allows flooding. When the destination address was not found in the IP address
table for routed packets, a default route is chosen.

2 Protected Port Mask Limit destination port for those packets which are received from a protected port.

3 Learning Map When the packet source address is unknown or if its source port address does not match the
entry in the address table, the learning queue is added to the destination map.

4 IGMP Snooping Map When the packet is an IGMP packet and IGMP snooping is enabled, the IGMP snooping
queue is added to the destination map

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 149 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 12: Ethernet Input Output Adapter (EIOA) Engines
Destination Result Map and Mask Operations

5 User Snooping Map When the packet is a TCP packet, user snooping is enabled, and the TCP destination port
number matches the user_port[15:0] value, the user snooping queue is added to the
destination map.

6 Aggregation Mask A mask is applied which is used to select a single port from each port aggregation group.
This mask is retrieved from an 8-entry table which is indexed by an arithmetic reduction of
the packet's MAC destination and source addresses. An additional aggregation ID mask is
applied in order to mask source aggregate transmissions.

7 VLAN Mask Disables all of the destinations which are not a member of the received packet VLAN. This
mask is retrieved from a table indexed by the packet VLAN ID. This mask is not applied to
routed packets.

8 Route Queue Map When the input to the VLAN mask (from the output of the aggregation mask) is non-null
and the output of the VLAN mask (that is, dest_map[23:0]) is null and the destination
address was found in the address table, then the packet is marked as a candidate for
routing. When the packet is marked as a candidate for routing and supervisor routing is
enabled, then the destination map bit which corresponds to the supervisor's routing queue
is asserted. This map is not applied to hardware routed packets.

9 Source Port Mask The packet receive port is removed from the destination map through the use of a mask
which is retrieved from a table indexed by the receive packet's port number. This mask is
also used to enforce private VLANs and other forwarding restrictions. This mask is not
applied to routed packets.

10 Spanning Tree Tx Mask Ports that are disabled due to the spanning tree algorithm are masked off for transmission.
This mask is not applied to routed packets.

11 IP Header Error Mask When the IP checksum validation performed during ingress processing fails, a mask is
applied to disable transmission of the packet. When the IPv4 options handling is enabled by
the receive port, this mask is applied to all packets containing these types of IPv4 fields. A
supervisor queue reserved for ICMP-related events is added to the destination map. The
supervisor is expected to formulate the appropriate ICMP response back to the original
source of the frame.

12 OAM Queue Map/Mask When the packet is an OAM packet, and the port has OAM enabled, then the OAM port is
added to the bit map, with the OAM mask applied to remove any unwanted ports.

13 Layer 2 Denial Mask When the source address is flagged for entry denial, then all of the active transmit ports are
masked off.

14 Time to Live Expired Mask When the time to live (TTL) value in the IP header is equal to zero or one, and the frame is a
routed frame, then the frame has expired and is not forwarded. Instead, a mask is applied to
disable destinations while a supervisor queue is added as a destination. This supervisor
queue is reserved for ICMP-related events such as TTL expiration. The supervisor is expected
to formulate the appropriate ICMP response back to the original source of the frame.

15 Mirroring Map When the packet receive port is on the mirroring list or if any of the bits asserted in the
destination map at this stage of processing correspond to ports being mirrored, then the
mirror port bit is asserted in the destination map.

16 Multicast Rate Discard Mask When the policer indicates that this packet is part of a multicast storm, and multicast storm
discard is set, then this mask is applied and some or all of the destinations are masked and
eliminated from the destination map.

17 ACL Deny Mask When this packet has been marked for Deny by ACL processing, then this mask is applied
and some or all of the destinations are eliminated from the destination map.

18 CRC Error Mask This mask is applied if there is any framer error.

19 Global Mask This mask is a catch-all which is used to shut down traffic to a particular port.

Step Map or Mask Type Destination Operation

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 150 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 12: Ethernet Input Output Adapter (EIOA) Engines
EIOA Multicast Replication

EIOA Multicast Replication

The EIOA can send tasks to multiple destinations for the following reasons.

 Multicast or broadcast MAC addresses
 Mirroring of tasks to multiple ports
 Unlearned destination addresses

When a task needs to be multicast, it is first processed through the EIOA and then sent back to the same EIOA with a
destination bitmap and a parameter that indicates that this task is intended for multicast replication. When it arrives at
the EIOA, the task is then replicated multiple times, creating a task for each of the bitmap destinations, and then the
task is deleted.

If the replicated task is part of an unlearned flow, as indicated in the task parameters, a counter keeps track of the
number of outstanding transactions to the corresponding address. When an address is learned, the address must be
routed through the multicast logic until all outstanding transactions are completed, at which time it can be routed
directly through the output. This process maintains the order for a given Ethernet traffic flow.

VLAN Statistics

The EIOA keeps VLAN statistics using the following sets of counters.

 1024 packet counters
 1024 byte counters

The EIOA can count block bytes or packets for sets of packets, based on the packet descriptions it receives for each
packet. You can configure what fields for which to count packets.

The EIOA receives packet descriptions from each IPP and EPP. The inputs include the following elements.

 Transmit or receive packet (For example, could use this to count Tx packets or bytes.)
 Physical port number
 Packet byte count
 VLAN ID
 IP priority or Class of Service

Each packet is counted once or ignored based on descriptions. When a packet is counted (packet counters) its byte
count is added to the corresponding byte counter.

The counters enables are controlled by selecting a subset of the input parameters. For example, you can configure the
EIOA to count the following items.

 Packets transmitted and received per port
 Packets transmitted and received per priority
 Packets received on 1024 selected VLAN IDs
 Packets transmitted and received on 512 selected VLAN IDs
 Packets transmitted and received on 510 selected VLAN IDs, plus other transmitted and received packets

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 151 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 12: Ethernet Input Output Adapter (EIOA) Engines
EIOA Egress Processing and Scheduling

EIOA Egress Processing and Scheduling

The EIOA egress processing supports:

 Queue scheduling
 Port shaping
 Packet field modification

Queue Scheduling

Each port has four queues. You can configure a port’s queues to schedule packets using the following modes:

 Strict priority — Higher priority traffic is always serviced before lower priority traffic.
 Weighted Priority (byte based) — Weights are assigned to queues based on packet byte counts. All queues with

non-zero weights are serviced proportionately according to their weights.

You can mix scheduling algorithms for a single port. For example, you could have a strict priority queue and three
weighted priority queues. The behavior would be that the strict priority queue is serviced whenever it has traffic, and
the weighted priority queues would share the remaining bandwidth according to weights.

Queue scheduling is work conserving. If only one of the queues is active, it will consume 100% of the available port
bandwidth.

Port Shaping

The EIOA engine port shaping feature lets you limit port bandwidth using a single token bucket. This is an optional
configuration setting.

Packet Field Modification

The Egress Packet Processor (EPP) can perform packet modifications. Based on the received tasks parameters, the EIOA
can modify the following fields.

 MAC source and destination addresses
 Up to two VLAN IDs can be added, removed, or modified.
 Class of Service field
 TTL and Checksum (IPv4)
 Priority (IPv4/IPv6)

You can use the following EIOA capabilities.

 Each packet processed by the EIOA has a VLAN address, either natively or assigned by the PCX. For packets that
should not be tagged with a VLAN address, that address can be removed.

 Based on the result of the ACL lookup, adjust the CoS or priority information received with the packet. Based on
the task parameters, the priority can be changed.

 If a frame is routed, the source MAC address can be modified and the TTL information, plus for IPv4, the
checksum.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 152 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 12: Ethernet Input Output Adapter (EIOA) Engines
Backpressure Support

Backpressure Support

The EIOA accepts backpressure from three sources:

 PAUSE frames from an external link (802.3x or 802.1Qbb)
 An accelerator engine
 Task queue backpressure

Handling PAUSE Frames

For 802.3x PAUSE frames, the MAC can be configured to perform these actions.

 Respond by not allowing transmissions after the current packet is sent
 Filter PAUSE frames, and not respond or forward them
 Forward the PAUSE frame to the parser for further processing

For 802.1Qbb priority-based PAUSE frames, the EIOA performs these actions.

 Filter PAUSE frames, and do not respond or forward them.
 Forward the PAUSE frame to the parser for further processing.
 Map the 8-bit priority to the four port queues, and stop serving task starts for that queue.

Engine Backpressure

Backpressure signals are 24-bit messages that indicates endpoints, if any, that need to be backpressured by the EIOA.
The EIOA can respond to backpressure signals with the following actions.

 Creating Tx PAUSE packets, either 802.3x or 802.1Qbb
 Backpressuring policer queues.

Use Case Examples

The following examples show you can use the EIOA for specific applications.

Preclassifier MPP Assist

The EIOA supports up to 8192 MAC addresses, but many applications require tracking many more addresses. In this
case, the MPP can store the complete database of MAC addresses for the application, with the EIOA supporting a
cache of the most recently used addresses.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 153 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 12: Ethernet Input Output Adapter (EIOA) Engines
Use Case Examples

Figure 31 Address Learning with MPP Assist

With this configuration, when the EIOA receives a packet with a new MAC address, the EIOA sends a learning task to
the MPP. The MPP determines which addresses to keep in the EIOA and sends learning and unlearning tasks to the
EIOA to maintain that database and keep the two databases synchronized.

Similarly, this technique can be used to synchronize MAC address tables across multiple Axxia devices. The additional
Axxia devices can be sent learning tasks, and can send learning tasks, to keep the MAC addresses in each device
synchronized.

In addition to learning assist, the EIOA can assist the MPP with ACL lookups, policing, and statistics counters,
offloading work the MPP would otherwise perform.

Daisy Chaining

For some designs, the network nodes may be connected in a daisy chain configuration. A message sent to one device
is passed on to the next device in the chain, repeatedly until the device the message is intended for receives it.

With the bridging capabilities of the EIOA, the daisy-chained messages can be quickly recognized by the first EIOA
classifier and switched to the next EIOA — without requiring any additional processing that could delay the message
arriving at its intended device.

Virtual Pipeline Extension (VPE)

The Virtual Pipeline Extension permits the Axxia device that receives a packet to process that packet and encode the
resulting output parameters in the packet for further processing by a downstream Axxia device. In effect, the packet is
passed from the first Axxia device virtual pipeline task ring to another Axxia device virtual pipeline task ring.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 154 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

Chapter 12: Ethernet Input Output Adapter (EIOA) Engines
Use Case Examples

Figure 32 Processing Virtual Pipeline Extension Packets

This capability is achieved by defining an Ethertype to mark VPE packets. The sending Axxia device inserts the
16 bytes of task parameters, including the VPE Ethertype.

For example, in applications that require multiple Axxia devices, the device that receives a packet may not have the
port that needs to schedule that packet. This device performs all necessary processing, except for scheduling to the
destination, encodes the output parameters to create a VPE packet, and sends it to the Axxia device that services the
port the packet requires. That Axxia device schedules the packet to the port and destination.

When the downstream Axxia device receives the packet, the EIOA parser recognizes it as a VPE packet, extracts the
output parameters, and sends it out as a task with the parameters to a downstream engine. In this example, the
packet is sent to the MTM for scheduling on the appropriate port.

Simple QoS without using the MTM

By using the port shaper and queue scheduling facilities of the EIOA, you can set up a simple QoS implementation
that does not require the use of the MTM to schedule packets.

Use the port shaper capability to limit the bandwidth for a port. Then, configure the four port queues with the
scheduling algorithms you want. For example, you might have one queue configured for strict priority to handle the
highest priority traffic, with the remaining three queues scheduled using a weighted round robin algorithm.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 155 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

 Axxia Communication Processor Glossary
Numbers

Axxia Communication Processor Glossary

This glossary contains acronyms, terms, and definitions used with Axxia communication processors.

Numbers

3DES

Triple data encryption standard (DES)

3GPP

Third Generation Partnership Project

8B/10B

A line code used in telecommunications and Ethernet that maps 8-bit symbols to 10-bit symbols to achieve
DC-balance and bounded disparity, and yet provide enough state changes to allow reasonable clock
recovery.

A

Accelerator Engines

Accelerator engines are intelligent engines within an Axxia communication processor that perform
specialized packet processing. They are sometimes called data path accelerator engines.

 DPI: Deep Packet Inspection
 EIOA: Ethernet Input/Output Adapters
 MMB: Memory Management Block
 MPP: Modular Packet Processor
 MTM: Modular Traffic Manager
 PAB: Packet Assembly Block
 PIC: Packet Integrity Check
 SED: Stream Editor
 SPP: Security Protocol Processor
 TMGR: Timer Manager

ACL

Access Control List

ADK

Axxia Development Kit

AEAD

Authenticated Encryption with Associated Data

AES

Advanced Encryption Standard

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 156 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

 Axxia Communication Processor Glossary
A

AH

Authentication header

ALU

Arithmetic Logic Unit, which is a digital circuit that performs arithmetic and logical operations.

AMC

Advanced Mezzanine Card is a printed circuit board (PCB) that follows a specification of the PCI Industrial
Computer Manufacturers Group (PICMG).

anti-replay

An IPSec subprotocol designed to avoid hackers making changes in packets traveling from a source to a
destination. The subprotocol uses a unidirectional security association to establish a secure connection
between two network nodes. Once a secure connection is established, the subprotocol uses a sequence
number or a counter to ensure the reception of sequenced transmitted packets.

API

Application programming interface

argument signature register

A 128-bit register within the MPP accelerator engine of an Axxia device. When an FPL program calls a
function, the MPP loads all arguments passed to the function into the register and makes the contents of the
register available to the FPL function as if the arguments were inserted into the packet immediately before
the position indicated by the current pointer. This action allows an FPL function to treat its argument and
packet data as one continuous stream for packet matching purposes.

ASE

Axxia Software Environment

An Eclipse-based graphical interface for building the Virtual Pipeline instances and packet data structures for
use with the Axxia family of multicore communication processors. LSI provides the ASE as a stand-alone
Eclipse package, or as a plug-in for an existing Eclipse installation.

Within the integrated development environment of the ASE, you can generate header files for FPL programs,
C-NP scripts, and the C programs used by the CPU engine. You can also compile your FPL or C-NP code and
run simulations to test and debug your configuration and application.

ASIC

Application-specific Integrated Circuit

ASR

argument signature register

Axxia

LSI Corporation family of multicore communications processors. Pronounced ak-see-uh.

Axxia Compressed Absolute Time

An Axxia absolute time format that uses a smaller number of bits, giving up precision and range of time
(relative to current time). Only used internally within the Axxia device.

Axxia Delta Time

An Axxia time format that specifies time relative to current time. The devices uses this format for (a) all timer
requests made from other accelerator engines, (b) FPL time requests to the MPP hash engine timer, and (c) as
part of the MTM engine Traffic Shaper.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 157 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

 Axxia Communication Processor Glossary
B

Axxia Time

A 64-bit accumulator that counts microseconds in a fixed-point representation, with the eight
least-significant bits representing fractional microseconds.

B

backpressure signal

A control message sent from a downstream accelerator engine to an upstream engine used to regulate and
optimize resources. The signals derive from task receive queue buffer thresholds or specific programmable
conditions. All engines can send backpressure signals and the NCA, MPP, MTM, and EIOA engines can receive
the signals.

base ID

The ID of the first entry in the namespace. The base ID applies to all engine tables in the namespace.

bit-level editing

Editing done on packet segment data using the BitFields parameter by the PAB engine. These actions include
(a) inserting a bit stream into an assembly at an arbitrary starting point (relative to start of assembly),
(b) transmitting a bit stream from an assembly, and (c) advancing an assembly head pointer and length to
remove data from assembly front

block editing

Editing done on packet segment data in 128-byte blocks by the SED engine. For many applications, this is an
efficient way to change, update, or add header information. You can edit packet header, payload, or trailer
data.

Branching Virtual Pipeline instance

Two or more engine sequences (branches) that share the same start engine (EIOA, MPP, Expander, or CPU)
and are grouped together. You use these pipelines when each branch (engine sequence) requires a similar
parameter set from the start engine, such that the branch processing differences can be managed in a flow
table.

buffer management

The regulation of task flow in the receive task queues by the Traffic Manager in the MTM engine using C-NP
scripts. Regulation can be done by (a) enqueuing or discarding tasks, (b) generating backpressure messages
at any specific scheduling hierarchy, and (c) removing backpressure.

Buffer Traffic Manager

A compute engine within the MTM that can run C-NP scripts. Scripts that run in the Buffer Traffic Manager
typically perform buffer management actions to determine whether to discard a packet or queue it for
processing.

C

C-NP

C for Network Processors is a high-level language designed to perform specific functions in scripts that run
within the Axxia accelerator engines. You can also use C-NP to program the MPP state subengine.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 158 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

 Axxia Communication Processor Glossary
C

cancellable timer

A timer provided by the Time Manager (TMGR) engine that can be changed (cancelled or time-out value
reset) once they start.

CBC

Cipher Block Chaining, which is a DES and AES mode.

CBS

Committed burst size

CCL

Classification Completion List, which is an internal data structure maintained by the MPP.

CDB

Connection Database

CFU

Call Forwarding Unconditional

checksum

A fixed-size datum computed from an arbitrary block of data, for detecting accidental errors introduced
during its transmission or storage.

CIR

Committed Information Rate

CMN

Configuration Master Node

compute engine

A subengine that exists in several accelerator engines. A compute engine runs C-NP scripts or executes
predefined functions for FPL programs running in the MPP.

COW

Coherent one-way protocol

CPU coprocessing

A technique used by Virtual Pipeline instances that define simple engine paths to and from the CPUs, letting
the CPUs off load computationally-intensive packet processing functions to the accelerator engines.

CRC

A cyclic redundancy check is an error-detecting code commonly used in protocols to detect accidental
changes in transmitted data. Packets prior to transmission get a short check value attached, based on the
remainder of a polynomial division of the packet contents. When data is retrieved the calculation is repeated,
and corrective action can be taken against data corruption if the check values do not match.

CSE

Crypto Service Engine, which is the section within the SPP in which all the cryptography engines reside.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 159 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

 Axxia Communication Processor Glossary
D

D

DCR

Device Control Register

DES

Data Encryption Standard

DMA

Direct Memory Access is a feature that allows hardware to access memory without involving the CPU. The
NCA provides hardware support for DMA task queues.

DPI

Deep Packet Inspection

DSA

Digital Signature Algorithm

DTSL

Datagram Transport Layer Security protocol

DWRR

Deficit Weighted Round Robin, which is a scheduling algorithm.

E

EBS

Excess burst size

ECB

Electronic CodeBook, which is a DES and an AES mode.

ECC

 Elliptical Curve Cryptography

EIOA

Ethernet Input/Output Adapter

End Engine

An end engine can only be last in an engine sequence. (EIOA, MPP, CPU, or Expander).

Engine Sequence

The sequence or list of accelerator engines that comprise a Virtual Pipeline instance as defined in the ASE.
Tasks that are launched into the Virtual Pipeline instance traverse that sequence of accelerator engines to be
processed.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 160 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

 Axxia Communication Processor Glossary
F

Engine Table

An area of memory on an Axxia device that is reserved for use by a specific accelerator engine. Engine tables
contain distinct data structures that you use for packet processing. They exist within namespaces and are
indexed by a contiguous range of 24-bit ID values. The most memory-efficient entry sizes are powers of 2
values (16, 64, 256, and so forth). Engine tables include these available types:

 Scheduling queues, schedulers, and shared scheduling parameters
 Stream Editor (SED) parameters
 Deep Packet Inspection (DPI) contexts
 Packet assembly or reassembly queues
 Policing and statistics tables
 Security Association (SA) information

ESN
Extended Sequence Number

ESP

Encapsulating Security Payload

F

failure interrupt

An engine interrupt that notifies the host processor of an engine processing failure. For example, a failure
interrupt could be triggered by a FIFO overflow or a packet processing error.

FBI

Functional Bus Interface

FBRS

File-based Register Simulation

flow

A set of packets that a configuration and an application treat the same way during packet processing, from
start engine to end engine. A user-defined set of packets that requires uniform processing.

flow ID

An index to a set of parameter values organized as a flow table entry. The pipeline start engine loads the flow
table values into the task that moves through the engine sequence.

flow table

A specific set of processing parameters needed for each individual flow in the pipeline.

FPL

Functional Programming Language is a proprietary LSI programming language for the MPP accelerator
engine. FPL functions are used to direct the MPP classification by running compiled FPL program on the MPP
pattern processing engines. State engine functions are also used with FPL programs for operations that span
multiple packets.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 161 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

 Axxia Communication Processor Glossary
G

frame check sequence

The extra bits and characters added to data packets (frames) for error detection and control. A set of
characters is added to the end of the frames, which are checked at the destination. Matching frame check
sequences indicate that the delivered data is correct

G

GMAC Ethernet

Gigabit Media Access Control, a block within each EIOA.

GMAC IPsec

Galois Message Authentication Code, which is a mechanism that provides data origin authentication, but not
confidentiality, within the IPsec Encapsulating Security Payload (ESP) and Authentication Header (AH).

GSM

Global System for Mobile Communications

H

handle

A token that identifies and accesses the Axxia device when using the RTE APIs. Also, a handle register holds
the result of an FPL function call in the MPP.

HFM

Hyper Frame Number

HMAC

Hash message authentication code

I

ICV

Integrity check value

IETF

Internet Engineering Task Force

IKE

Internet Key Exchange

IMIX

Internet Mix, which is typical Internet traffic passing some network equipment, such as routers, switches, or
firewalls. When measuring equipment performance using an IMIX of packets, the performance is assumed to
resemble real-world traffic patterns and packet distributions. IMIX traffic is defined as 56 percent 64-byte
packets, 20 percent 576-byte packets, and 24 percent 1518-byte packets.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 162 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

 Axxia Communication Processor Glossary
J

initial segment

The PAB applies the StartOffset data to every segment except the initial segment that begins the reassembly.
For the initial segment, the PAB uses the FirstOffset instead of the StartOffset parameter.

inline task parameters

Output parameters from upstream engines or flow table entries.

intermediate engine

An engine that neither starts or terminates an engine sequence. It receives a task, optionally modifies it, and
sends it to the next engine in the sequence. Intermediate accelerator engines are SPP, DPI, PIC, PAB, MTM, and
SED.

IOA
Input/Output Adapter

IPsec

Internet Protocol Security protocol

IRAM

Instruction RAM, which is memory within a compute engine that stores VLIW instructions for execution.

ISA

Instruction Set Architecture

ITA

Input Task Accumulator

ITM

Input Task Manager

IV

Initialization Vector

J

JRE

Java Run-time Environment

L

LCM

Local CPU Memory

LPM

Longest prefix match is a table search algorithm that selects the most specific matching entry in a table
where entries can be incompletely specified (wild carded). Longest prefix matching is required when looking
up Internet Protocol routing table entries and is one of several types of matching that the MPP supports.

LTE

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 163 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

 Axxia Communication Processor Glossary
M

3GPP Long Term Evolution

M

MAC

Message Authentication Code (cryptography) or Media Access Control, depending on its context.

MKI

master key identifier

MMB

Memory Management Block

MPE

Multiprotocol Engine

MPIC

Multiprocessor Interrupt Controller

MPP

Modular Packet Processor

MPP PIC
MPP Packet Integrity Check engine, which is an engine within the MPP that performs a subset of PIC
functions.

MTM

Modular Traffic Manager

N

Namespace

An area of memory on an Axxia device that holds distinct data structures that you use for packet processing,
and is indexed by a contiguous range of 24-bit ID values. A namespace can contain one or more engine
tables. Engine tables are sets of entries within a namespace that are used by a specific accelerator engine.
Engine tables contain data structures for use by the specific engine. The available types of engine tables
include:

 Scheduling queues, schedulers, and shared scheduling parameters
 Stream Editor (SED) parameters
 Deep Packet Inspection (DPI) contexts
 Packet assembly or reassembly queues
 Policing and statistics tables
 Security Association (SA) information

NCA

Nuevo CPU Adapter

NHA

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 164 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

 Axxia Communication Processor Glossary
O

Nuevo Host Adapter

NIC

Nuevo Interconnect Crossbar

non-cancellable timer

Unstoppable timer that runs until completion.

NSMI

Nuevo System Memory Interface

O

OTM

Output Task Manager

P

PAB

Packet Assembly Block

packet

A packet consists of two kinds of data: control information and user data (also known as payload). The control
information provides data the network needs to deliver the user data, for example: source and destination
addresses, error detection codes like checksums, and sequencing information. Typically, control information
is found in packet headers and trailers, with payload data in between.

pattern processing engine

One of several highly multithreaded packet classification subengines that can access routing tables, access
control lists, and other information.

PBU

Predicate and Branch Unit – a digital circuit within the compute engines that operates on predicates to
increase instruction-level parallelism, streamline control flow, and reduce the number of branch instructions.

PCIe

Peripheral Component Interconnect Express

PCQ

Producer-Consumer Queue

PCX

Preclassifier and Ethernet Switch

PDCP

Packet Data Convergence Protocol

PDU

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 165 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

 Axxia Communication Processor Glossary
P

A Protocol Data Unit is (a) Information delivered as a unit among peer entities of a network, containing
control information, such as address information, or user data. (b) In a layered system, a data unit of data
specified in a protocol of a given layer that consists of protocol-control information and possibly user data of
that layer.

PIC

Packet Integrity Check

PIM

PQM Instruction Memory

PIPE

PHY Interface for PCI Express, which is a standardized interface between a PCIe physical interface (PHY) block
and a PCIe media access control (MAC) block, as defined in the PHY Interface for the PCI Express Architecture
specification from Intel Corporation.

pipeline
Virtual Pipeline instance is the preferred terminology. One or more processing engine sequences through the
Axxia device.

PIR

peak information rate

PMU

Performance Monitor Unit. Different Axxia devices include different internal CPUs, that in turn possess
different numbers of PMUs. The PMUs count selected events.

PPE

Pattern Processing Engine

PQM

Prequeue Modifier. An entity in the MPP that can modify a packet.

Predicate Word

32 bits of memory available to a compute engine.

Processing Path

Packets travel along the processing path. The processing path is comprised of a sequence of Virtual Pipeline
instances.

Project Configuration

A defined set of XML configuration files within one ASE project. The ASE uses the project configuration to
build your project. A build action includes generating header files, compiling programs, scripts, and regular
expression rule sets, validating your hardware definitions and software, and generating a binary
configuration file. Every ASE project has at least one (default) project configuration.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 166 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

 Axxia Communication Processor Glossary
R

R

RED

Random Early Detection is a task keep or discard policy that uses a single value (slope) to determine how
aggressively to manage the task queue. The slope determines the aggressiveness of the accelerator engine
Random Early Discard (RED) policy. Specify a decimal fraction from zero to one (very aggressive, yet even
policy). A value less than one also defines a less evenly distributed policy, where a smaller percentage of
incoming tasks are refused as the task queue uses more resources.

Register File

256 bytes of memory available to a compute engine.

RFC

Request for Comments, an IETF standard

RLC

Radio Link Control protocol

RN

Random number

RNC

Radio Network Controller

ROC
Rollover counter

RRC

Radio Resource Control

RSA

RSA is an algorithm for public-key cryptography. RSA represents Ron Rivest, Adi Shamir, and Leonard
Adleman, who first described the algorithm.

RTCP

Real-time Transport Control Protocol

RTE

The Run-time Environment is a set of APIs and commands that can initialize, configure, and control the Axxia
family of communication processors.

The APIs are implemented in ANSI C and are designed to easily port to a variety of different operating
systems and microprocessor environments. To use the APIs, include them in a C-language control program,
and load the program onto a host processor. The host processor can then access the Axxia device using the
supported hardware connections. Use the APIs to perform the following tasks:

 Initialize components of the Axxia device.
 Read and update data structures, such as pattern trees or packets.
 Read and update status information and statistics.
 Read from and write to most control registers and memory.

The commands enable you to access the Axxia device from the command line.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 167 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

 Axxia Communication Processor Glossary
S

RTP

Real-time Transport Protocol

Rx

Receive

S

SA

Security Association

SAL

The System Abstraction Layer isolates all system-level dependencies to a well-defined set of interfaces that
enhance the portability of the RTE software.

SDWRR

Smoothed Deficit Weighted Round Robin, which is a scheduling algorithm that provides a good
approximation to weighted fair queuing without incurring the burstiness and latency drawbacks traditionally
experienced with deficit weighted round robin scheduling algorithms.

SED

The Stream Editor (SED) accelerator engine that edits 128-byte blocks of either packets or fragments. The SED
contains the following functional components:

 The SED load logic merges multiple sets of input parameters into one set and can modify packet data
before the SED script runs.

 The compute engine within the SED can run C-NP scripts to modify packet data and set up parameters to
modify packet data after the script runs.

 The SED unload logic updates packet data in memory, makes any modified parameter values available to
downstream engines, and can modify packet data to append trailer information.

service interrupt

An engine interrupt that signals the host processor that this engine requires service from the CPU. For
example, when the NCA completes a DMA operation, it triggers an interrupt that notifies the CPU that the
operation is complete.

Simple Virtual Pipeline Instance

A simple Virtual Pipeline instance defines only one engine sequence.

SMON

Statistics Monitor

SMP

Symmetric Multi-processor

SN

Sequence Number

SPI

Security Parameter Index

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 168 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

 Axxia Communication Processor Glossary
T

SPP

Security Protocol Processor

sRIO
Serial Rapid I/O is a point-to-point, packet-switched interconnect technology that uses 8B/10B encoding to
stream clock and data signals.

SRTCP

Secure Real-time Transport Control Protocol

SRTP

Secure Real-time Transport Protocol

SSL

Secure Sockets Layer

SSSAR

Segmentation and Reassembly Service Specific Convergence sublayer of the ATM Adaptation Layer (AAL)
type 2

Start Engine

A start engine starts or launches a task for an engine sequence and must be first in an engine sequence.
(EIOA, MPP, CPU, or Expander).

State Engine

A component within the MPP accelerator engine. The State Engine includes both logic to perform arithmetic
and logical calculations for an FPL program running in the MPP and a compute engine to run C-NP scripts.
The State Engine is typically used to perform calculations for the FPL program or to maintain state
information across more than one run of the FPL program.

T

task

A set of processing parameters that sequential engines use to exchange packet processing information. A
start engine creates a task, the intermediate engines use the task, and an end engine consumes the task.
When an engine completes its processing for a task, it sends the task to the next engine in the pipeline. A task
often contains a reference to a packet and associated parameters to process the packet but can sometimes
contain only commands and associated parameters.

task inline parameters

Parameters (32 bytes) used for script processing that arrive with the task. The SED engine loads these
parameters when the first block is processed and stores them in the register file for a compute engine script
to use for all blocks.

task load balancing

The choice of an individual subengine to perform packet processing based on (a) priority (least number of
tasks enqueued for the given priority) or (b) subengine with the least number of tasks enqueued, without
considering priority.

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 169 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

 Axxia Communication Processor Glossary
U

task receive queue

An address in memory used by an accelerator engine to maintain one or more task queues that store
incoming tasks. Engines assign a 0 to 7 task priority to each queue and use a scheduling algorithm to select
which queue is next for service.

TCP

Transmission Control Protocol

TCRI

Task Contents Read Interface

TDI

Task Deletion Interface

TLS

Transport Layer Security

TMGR
Timer Manager

TOID

Task Order ID

Traffic Shaper

A compute engine within the MTM that can run C-NP scripts. Typically, a configuration and an application run
scripts in the Traffic Shaper either to choose between the children of a scheduler (arbitration) or to control
the traffic of a scheduler or queue to conform to a particular rate (shaping).

Trafgen

A traffic generation utility provided with the ASE that enables you to generate or obtain input traffic for use
as you simulate a configuration and application. You can direct Trafgen to either generate traffic internally,
based on configuration parameters that you define, or to obtain the traffic externally, from an external file or
an external application.

TRNG

True Random Number Generator is used for initial vector generation for key management protocols.

TSI

Task Start Interface

Tx

Transmit

U

UDIMM

Unbuffered Dual-Inline Memory Module

UDP

User Datagram Protocol

LSI Corporation Confidential. Advance Copy – Not for General Distribution
- 170 -

AXX2500 Virtual Pipeline Technology and Accelerator Engines Reference Manual
September 2012

 Axxia Communication Processor Glossary
V

UE

User equipment

UTMS

Universal Mobile Telecommunications System

V

VPE

Virtual Pipeline Extension is an Axxia device feature that enables multiple Axxia devices to be efficiently
networked or connected directly. An initial device receives a packet, processes it, encodes the resulting
output parameters in a packet (using a custom Ethertype value) and sends the packet to another Axxia
device. When the downstream Axxia device receives the packet, the EIOA uses the custom EtherType value to
recognize a VPE packet, extract the output parameters, and send the packet to a destination (port or another
Virtual Pipeline instance).

Virtual Pipeline instance

A set of one or more engine sequences that defines all or part of the packet processing in a configuration and
application. Each engine sequence contains a start engine, an end engine, and optional intermediate
engines. A configuration and an application can contain one or more Virtual Pipeline instances. Axxia devices
support two types of Virtual Pipeline instances: simple and branching.

VLAN

Virtual Local Area Network

W

WCDMA

Wideband Code Division Multiple Access

WRR

Weighted Round Robin is a scheduling algorithm.

X

XGMAC

10-Gigabit Media Access Control, a block within each EIOA.

	Axxia® AXX2500 Family of Communication Processors
	Chapter 1: Introduction to the Axxia Virtual Pipeline Technology
	Overview
	Accelerator Engines
	Engine Sequences and Virtual Pipeline Instances
	Branching Virtual Pipeline Instances and Flows
	APIs for Managing Virtual Pipeline Instances

	Task Communication
	Messaging in Pipelines
	Passing Parameters Using Tasks
	Task Management
	Task Receive Queues

	Maintaining Task Order
	Load Balancing using Tasks

	Flow Parameters
	Backpressure
	Backpressure Signals

	Namespaces
	Engine Tables
	Namespace Configuration
	Engine Table Characteristics

	Namespaces with More than One Engine Table
	Engine Table Entry Size and Memory Usage
	Managing Namespaces and Engine Tables from FPL Software or Using the RTE
	Sharing Data Between Engine Tables
	Engine Table Memory Addressing
	Engine Table Code Generation

	Troubleshooting
	Engine Monitoring
	Task Error
	Engine Interrupts

	Task Monitoring
	Conditional Logging

	Chapter 2: Modular Packet Processor (MPP) Engine
	Overview
	MPP Classification Capabilities

	Features
	Pattern Processing Subengines
	Hash Subengine
	State Subengine
	Prequeue Modifier
	Semaphore Subengine
	MPP Packet Integrity Check Subengine

	MPP and Engine Sequence Interaction
	MPP Block Diagram
	MPP Pattern Processing Engines
	MPP Hash Engine
	MPP State Engine
	MPP Prequeue Modifier (PQM)
	MPP Semaphore Subengine
	MPP Packet Integrity Check Subengine

	Input and Output Parameters
	MPP End Engine Input Task Parameters
	MPP Start Engine Output Task Parameters

	Packet Processing
	Classification
	Dynamic Resource Management
	Names, Timers, and Hash Table Structure
	Stateful Processing
	State Engine Built-In Functions
	State Engine Compute Engine
	Exceptional Event Communication Using a Producer/Consumer Queue
	Enforcing Ordered Execution

	Packet Modification
	MPP Interaction with Engine Sequences
	FPL Flow and Tree Instruction Fetch
	Task Debugging

	Exception Handling
	State Engine
	MPP Packet Integrity Check Engine
	Hash Engine
	MPP System Monitoring Capabilities
	MPP Task Debugging

	Chapter 3: Memory Management Block (MMB) Engine
	Overview
	Features

	Chapter 4: Packet Assembly Block (PAB) Engine
	Overview
	Features
	PAB Functions
	Identifying the Segment Data for Reassembly
	Defining the Segment Placement in the Reassembly Context
	Defining the Reassembled Packet Data to be Transmitted
	Transmitting the Reassembled Packet
	Discarding the Reassembly Context
	Checking Reassembly Context Status

	Using the PAB
	Creating a Reassembly Context
	Adding Segments to Reassembly Contexts
	Transmitting All or Part of a Reassembled Packet
	Clearing a Reassembly Context
	Monitoring Reassembly Context Status
	Bypassing the PAB
	Using Bit-level Operations
	Using Timers with the PAB
	Using Sequence Numbers

	PAB Configuration Overview
	PAB Task Receive Queue Configuration
	PAB Task Input Parameters
	PAB Task Output Parameters
	PAB Task Output Parameters without the GetStatus command
	PAB Task Output Parameters with the GetStatus command

	PAB Commands
	Independent PAB Command Parameters
	ReassemblyIndex
	SizeoutThreshold
	TimerValue
	ExceptionNotify
	BMIgnore
	DiscardOnTimeout
	DiscardOnSizeout
	TimerControl
	SeqCheckEnable
	BlockSequenceCheck
	SeqNumber
	Sticky

	Using the Enqueue Commands
	Enqueue Commands
	Enqueue Command Parameters
	Enqueue with Transmit Command
	Enqueue with TransmitCopy Command
	Enqueue with Transmit with Discard Command

	Using the Transmit Commands
	Transmit Commands
	Length
	WriteOffset
	LengthBitOffset
	DestBitOffset

	TransmitCopy Command
	Transmit with Discard Command
	Discard Command
	Length
	LengthBitOffset

	Sticky Discard Command
	Cleanup Command
	Passthrough Command
	GetStatus_reasmState Command
	GetStatus_reasmPrioMem Command
	GetStatus_PrioMem Command

	PAB Exception Handling
	Hardware Exception Handling
	Error Containment
	Error Recovery
	Error Syndrome

	PAB Performance Monitoring Facilities

	Chapter 5: Modular Traffic Manager (MTM) Engine
	Overview
	Features
	Buffer Management
	Traffic Scheduling and Traffic Shaping
	Flow Control
	Multicast Support

	MTM Processing
	MTM Functional Description
	Scheduling Packets
	Root Scheduler
	Adjusting Packet Size
	Arbitration and Scheduling Modes
	Rate Shaping Traffic
	Scheduler Operation
	SDWRR Scheduling
	DWRR Scheduling
	Strict Priority Scheduling
	Controlling Arbitration with Scripts
	Applying and Receiving Backpressure

	Defining Buffer Management Policies
	Building the Scheduling Hierarchy
	MTM Task Receive Queues and Buffer Management
	Task Receive Queues
	MTM and Expander Engines
	Task Arrival and Enqueuing Arbitration
	Queue, Scheduler, and Global Parameters
	Buffer Management
	Draining Traffic from Queues and Schedulers

	MTM Input and Output Parameters
	MTM Input Parameters
	MTM Output Parameters
	Setting the Final Output Target
	Unicast Processing

	Expander Input and Output Parameters
	Expander Input Parameters
	Expander Output Parameters
	Expanded Unicast Processing
	Multicast Processing

	MTM Exception Handling
	MTM Performance Monitoring Facilities

	Chapter 6: Timer Manager (TMGR) Engine
	Overview
	Features
	Time Representations
	Formats
	Axxia Time
	Axxia Delta Time
	Axxia Compressed Absolute Time

	Accuracy and Precision for Axxia Time
	Timers
	Non-cancellable Timers
	Cancellable Timers

	Using the TMGR Engine
	Characteristics
	Task Input Queue Configuration
	Starting TMGR Processing
	Task Input Parameters
	Task Output Parameters

	Exception Handling
	External Timing Reference Interface

	Performance Monitoring Facilities
	Timer Support
	Timer Support for Resource Management
	Timer Support for Scheduling
	Timer Support for General CPU Processing

	Support for External Clock Generation and Synchronization
	Generating an Output Reference Clock from Axxia Time
	Using an Input Reference Clock to Synchronize Axxia Time
	Mapping an Input Strobe to Synchronize Axxia Time with an External Device
	Using an Output Strobe to Synchronize Axxia Time with an External Device
	Support of Timing over Packet (ToP) Protocols
	Using EIOA Engines to Capture Network Time from Packets

	Chapter 7: Stream Editor (SED) Engine
	Overview
	Features
	SED Architecture
	SED Task Receive Queue Configuration

	SED Functional Description
	SED Capabilities
	SED Packet Editing Parameters
	SED Parameter Processing

	SED Input and Output Parameters
	SED Input Parameters
	SED Output Parameters

	SED Parameter Structure
	Parameter Data Structure
	Parm1 and Parm2 Namespace Table Parameters
	Indirect Mode Characteristics
	Merging Script Parameters
	Using Parm1 and Parm2 Parameter Combinations
	Using SED Parameters

	Exception Handling

	Chapter 8: Security Protocol Processor (SPP) Engine
	Overview
	Supported Protocols and Features
	Configuring Secure Connections
	SPP Architecture
	Virtual Pipeline Model
	SPP Virtual Pipeline Operation

	Chapter 9: Deep Packet Inspection (DPI) Engine
	Overview
	DPI Features
	Internal Architecture
	Compiling Rulesets to Configure the DPI

	DPI Task Input Queue Configuration
	Context Across Packets Within a Flow

	Initiating DPI Processing
	DPI Task Input Format
	Load Balancing
	Result Format
	Start Conditions
	Maximum Output

	DPI Task Output Format
	FirstResult and AllResult Formats
	Vector Result Format

	DPI Data Structures, Commands, and Exception Handling

	Chapter 10: Packet Integrity Check (PIC) Engine
	Overview
	Features
	CRC and Checksum Operations
	Supported IP Layer 4 Protocols

	PIC Engine Processing
	PIC Input and Output Parameters
	PIC Input Parameters
	Setting Input Parameters
	PIC Output Parameters
	PIC Status Parameter

	PIC Exception Handling
	PIC Statistics Monitoring

	Chapter 11: Network Compute Adapter (NCA)
	Overview

	Chapter 12: Ethernet Input Output Adapter (EIOA) Engines
	Overview
	EIOA Engines with Preclassifier and Ethernet Switch (PCX) Features
	Hardware-based Address Learning
	VLAN Support
	Access Control List Support
	Ingress Policing
	Scheduling and Shaping
	Additional Ethernet Switching Functions

	Axxia EIOA Architecture
	EIOA Packet Classification
	Virtual Pipeline Destinations
	Egress Processing

	Ingress Packet Data Flow Overview
	EIOA Core Logic Processing
	Ingress Packet Processor (IPP) Functions
	Bridging Layer Classification and Switching
	Building the Bridging Lookup Keys
	Source Address Lookup
	Destination Address Lookup

	MAC Address Learning
	MAC Address Aging

	ACL Classification
	Ingress Policing
	Destination Result Map and Mask Operations
	EIOA Multicast Replication
	VLAN Statistics
	EIOA Egress Processing and Scheduling
	Queue Scheduling
	Port Shaping
	Packet Field Modification

	Backpressure Support
	Handling PAUSE Frames
	Engine Backpressure

	Use Case Examples
	Preclassifier MPP Assist
	Daisy Chaining
	Virtual Pipeline Extension (VPE)
	Simple QoS without using the MTM

	Axxia Communication Processor Glossary
	Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

